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1. General
The four year duration of this grant has resulted in twenty-five technical publica-

tions in the general areas of signal estimation and source coding. A copy of each publi-
cation is found in the Appendix. In addition to these publications, one patent applica-
tion has been filed dealing with a novel method of multi-dimensional quantization.

In addition to the numerous publications noted above, this project has resulted in
the graduation of four Ph.D. students who have been supported in whole or in part
through this grant. Two of these dissertations, one by Jim Bucklew and one by Kerry
Rines, deal with the analysis and design of block quantizers. The remaining two disser-
tations by Gonzalo Arce and Tom Nodes treat properties of median filters. A fifth
dissertation by Tom McCannon is still being researched. This research concerns the
design of nonlinear estimators and predictions. Here we will present a brief description
of the technical results; however, the detailed discussion is contained in the attached
reprints.

The work on multidimensional quantizers began with a search to find better ways
of quantizing multidimensional vectors. We started with a study of vectors with Gaus-
sian distributions and then generalized to circularly symmetric distributions. We
developed new derivations for bounds on quantizer performance. Finally, we developed
a very simple procedure by which to implement the known optimum quantizer struc-
tures. This procedure has been the subject of a patent application.

Our work in nonlinear estimation began with a study of estimation schemes which
used an extended form of the projection theorem in their design. We combined polyno-
mial operations with linear operations in the estimator design.

Our work led to an investigation of the properties of the median filters. Our ini-
tial interest in the median filter began because of the fact that these median methods
really seem to work in many situations where linear estimators are ner -ly useless. The
problem with median filters (and therefore our opportunity) has been the atmost com-
plete lack of theory on their properties and for their design. We have viewed this as a
chance to make a significant contribution in this relatively new field of median
methods. We believe we have made several major contributions to the analysis of
median filters as illustrated by two Ph.D. dissertations and a number of invited techni-
cal presentations on the topic of median filters. Copies of these dissertations will be
mailed as separate technical reports.

• ~ ~ ~~~~~~~~~~~~~~~ --nl -du -~nl h nau m -f~d m -d - -m.t -l. nm ,.l .. . .. . . ---
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A NOVEL APPROACH FOR DESIG;NING NONLINEAR DISCRETE TIME FILTERS: PART I

D. MINOO-HAMEDANI and C.L. WISE
Department of Electrical Engineering
University of Texas at Austin

Austin, Texas 78712

and

N.C. GALLAGHER and T.E. McCANNON
School of Electrical Engineering
Purdue University

West Lafayette, Indiana 49707

ABSTRACT

The problem of minimum mean squared error prediction of a discrete time
random process using a nonlinear filter consisting of a zero memory non-
linearity followed by a linear filter is studied. Classes of random proces-
ses for which the best predictor is realizable using a nonlinear filter of
the above form are discussed. For those random processes for which the
best predictor is not realizable using the above nonlinear filter, an iter-
ative procedure is presented for finding a suboptimal nonlinear filter.

I. INTRODUCTION

In this paper we consider a second order random process (Xno nl,2,. .,

and we are interested in predicting the random variable X+l from an obser-

vation of Xl,...,XN . Our estimate is denoted by XN+l , and we wish to choose

it so as to minimize the mean squared error.
It is well known [1, pp.77-783 that the optimal estimate of XN+l in

terms of XI,...,XN is given by the conditional expectation

XN+ I  = E {X N+l I XN,....Xl}

In general, this is a Borel measurable function of X1 ,... ,XN, and in many

cases an exact expression for this quantity is difficult to obtain. Often
we do not have the necessary statistical information to evaluate such a
quantity. Linear estimation has been widely studied [2), and it is well
known that the best linear estimate of XN+l given the observations XI,...

XN is obtained by applying the Projection Theorem [1, pp.150-155]. It is

clear that in this case the only statistical information required is the
second moment characteristics of the random process.

In this paper we restrict our estimate XN+l to be of a form that is

expressible as the output of a system consisting of a zero memory nonline-
arity (ZNL) followed by a linear filter. The ZNL is characterized by a
Borel measurable function g(') such that g(X1 ),...,g(XN+l) are second order

random variables. If the weighting sequence of the linear filter is given
by h0 ,.. 9hN-l, then the estimate is given by

* NXN+l L g(xn )h _n . l
n-1

Presented at the Sixteenth Annual Ailerton Conference on Contmunication,
Con troZ, and Conputing, October 4-6, 1978; to be published in the
Proceedings of the Conference.
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We wish to determine a function g(.) and a set of coefficients h0 ,.... hN-1

in such a way that the resulting mean squared error is minimized. With this
form of an estimate, we are guaranteed that the performance can be at least
as good as that of the optimal linear filter.

In Section II we consider some cases where the optimal estimate has
the form of Eq.(l). In the general case the optimal predictor will not
have the form of Eq.(1) and thus a predictor of this form will be suboptimal.
This situation is discussed in Section III where an iterative scheme is
presented for determining suboptimal predictors. In Section IV examples
are given to illustrate the method.

II. OPTIMAL PREDICTION

In this section we consider some cases where the optimal filter has
the form of Eq.(1). Whenever the optimal filter is linear, then it obviously
has the form of Eq.(l) with g(x)=x. The class of spherically invariant
random processes [3] admits linear solutions, with the most well-known
examples being the Gaussian processes.

It is clear that the performance of the filter given by Eq.(l) can
always be made at least as good as that of the optimal linear filter. In
some cases the filter given by Eq.(l) can be optimal while the optimal
linear filter is useless. For example, let X nP n(U) where U is a random

variable uniformly distributed over [-1,1] and P n.) is the n-th Legendre
polynomial. In this case, the sequence {X n=1,2,...} is a sequence of

uncorrelated zero mean random variables and the optimal linear filter yields
an estimate which is zero. However, for g(x)=PN+l(x) and

h 1J 1, n=O
n 0, nO0

the filter of Eq.(l) gives the estimate XN+I=XN+.l Numerous examples

similar to this can easily be constructed.
When the process is a (first order) Markov process it is well known

[1, pp.81-83] that E{XN+lIXN,... ,X = E(XN+IIXN}, with probability one

(wpl). Thus a system of the form of Eq.(l) with a ZNL given by g(x)=
E{X N+IX N = x) and a weighting sequence given by

= 1, n=0
n O, n# 0

will yield the optimal estimate of XN+ I .

Markov processes serve as the model of many physical phenomena that
arise in practice. Often they are obtained as the solution of first order
stochastic difference equations of the form

X n+I = g(Xn ) + Zn+ , n=0,1,2,...

where g(-) is a Borel measurable function and the sequence {Z n is an
sequence of zero mean independent random variables independent of the
initial condition X0. It is easily seen that in this case we will have

EI. N+ cxeN .... FXr n =g(rno) wplo
IL is clear that for any random process for which
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N
E{XN+lIXN... ,Xll E g(Xn)h N n  wpl, (2)

n-1

a system of the form of Eq.(l) will produce the optimal estimate of X 1 .

As another example of a process for which the conditional expectation has
the form of Eq.(2) consider the process generated by the following second

- order stochastic difference equation:

X n+2 = 0 g(X n+) + hIg(X n ) + Zn+2 , n=-l,O,l,2,..., (3)

where g(.) is a Borel measurable function and {Z I is a sequence of zero
n

mean independent random variables independent of the initial conditions
X 1 and XO . It can be easily seen that for this example, for any N>2,

E{XN+lIXN,...XI = h0g(XN ) + hlg(Xs_1 ) wpl.

Extension of this example to the case where Eq.(3) is a k-th order stochas-
tic difference equation is obvious.

To obtain a characterization of a random process for which a form of
Eq.(2) holds, we use a theorem due to Balakrishnan [4].

Theorem (Balakrishnan): Let C (t ... , ) denote the joint character-
N+l 1' N+1

istic function of the random variables X1 , ...,XN+l. Assume that the moments

of all orders of the random variables exist, so that CN+1(...) has deriva-

tiveso f all orders. Lt Ik denote the differential operator 3( )/Dit k9

I,(t
I

DkCN+1 t . tN+ I) = ait CN+1 ..... tN+1)
k

Let P(xl,... ,xN) be a polynomial in N variables. Then a necessary and

sufficient condition for

E((XN+l)M XN,..., X1 } = P(Xl,... ,XN) wpl

is that

_M

M CN+l .... tN+l)lt 0 P(Dl,...,DN) C N+I(t l , . .. ,tN 0).
3(it C (t N+1 + l* t )

Now, in the above theorem let M-n1 and let g(.) be a polynomial of
degree d, i.e.

g (x)- a , (4)

and assume P(x1 ,... ,xN) has the form
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N N d

P (x . xN ) = . hNInx(x) = 1 hN a (xn)
n=l n=l j0 -

Assume that the random variables in the process possess moments of all

orders. Then a necessary and sufficient condition for Eq.(2) to hold,

where g(-) is given by Eq.(4), is that

N d

C Crt '. t N dj hNa*N tlt... t 0)a(itN) N+l .... N+l thENn j n+l .... N9
N+lN+= n=l j=O

This result is of limited practical usefulness, because one often does not
have the necessary statistical information available.

Il1. SUBOPTIMAL PREDICTION

In the general case there will not exist a function g(.) and a
weighting sequence ho,...,h such that Eq.(2) is satisfied. However, it

is quite reasonable to conjecture that in many cases it may be possible to
determine a filter having the form of Eq.(l) with a mean squared error
either significantly smaller than that associated with the optimal linear
filter or very close to the mean squared error associated with the optimal
filter.

Once we assume that the function g(.) that minimizes the mean squared
error is known, the g(X )'s will be well defined random variables and then

determination of the h 's that minimize the mean squared error reduces to

an application of the Projection Theorem, i.e. setting

Ir N1
E [XN+I F h hN gCX n] g(X.) 0 , JI..N

IL Jn=l

and solving for the h 's. To carry out this step we need to calculate then

terms E{g(Xn)g(X.)} and E{XN+lg(Xj)). The difficult problem is the deter-

mination of the function g(.) that minimizes the mean squared error.
Notice that, in the optimization problem where the filter is constrained

to be of the form in Eq.(1), only second order information (i.e. the family
of bivariate distributions) is required. This is more statistical infor-
mation than is required if we were doing optimal linear filtering, which
requires second moment information. However, it is still considerably
less statistical information than is required if we were doing optimal
filtering, which requires statistical information pertaining to an (N+l)-st
dimensional distribution.

In order to circumvent the difficult problem of determining the
function g(-) to use in Eq.(l), we will parameterize g(.) and thus let the
determination of g(.) simply depend upon finding the correct parameters.
Doing so, we would then write the resulting mean squared error as a function
of the parameters associated with g(-) and the weighting sequence of the
linear filter. In this case, the mean squared error would be a function of
K+N parameters, where K is the number of parameters associated with g(.).
For example, let g(.) be given by

K
g(x) = E a b (x)

j=l
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Then our estimate is given by

N K

XN+l= E F hN-na b (Xn )
n==l =

and the resulting mean squared error is given by

EXN+l-+] = E 2XN+ -2 F, hNnaj EIXN+lb. (Xn)1 (5)
n-l j=

+ N, h N-n hN-ma j akE lb (Xn )bk (Xm )I

n=1 m=l j= k=

The functions b.() should be determined so that there is considerablej

flexibility in the functional form of g(.) and also so that the expectations
in Eq.(5) could be determined from the statistical information at hand. For

example, if b.(x)=xJ, then the necessary statistical information would con-

sist of the higher order joint moments.
The next step might be to minimize Eq.(5) over the N+K parameters.

This would result in N+K equations of third order polynomials in the param-
eters. This simultaneous optimization over all the parameters presents
potential numerical problems. As an alternative to the simultaneous opti-
mization over all the parameters, we will now describe an iterative tech-
nique.

The basic plan of the iterative technique is to consider the two sets
of parameters separately and to iteratively optimize over one set of param-
eters while holding the other set fixed. This iterative technique results
in the need to solve systems of linear equations, as opposed to the need to
solve systems of equations in third order polynomials such as encountered
in the effort to simultaneously optimize over all the parameters.

We will assume that the parametric form of g(.) is such that with the
proper choice of parameters we could have g(x)=x. In this way the mean
squared error that results will always be upper bounded by the mean squared
error associated with the optimal linear filter.

The iterative technique is as follows:
Step 1. Determine the optimal weighting sequence

h0 ... ,hN-1 for the case where g(x)-x.

Step 2. Evaluate the resulting mean squared error.

Step 3. For this choice of ho,... ,hN-l, determine

al,...,a K so as to minimize the mean

squared error.

Step 4. For this choice of a.,... ,aK, determine

the optimal weighting sequence h0,..., hNl.

Step 5. Repeat Steps 3 and 4 until the improvement
in the mean squared error is negligible.

The a,...,aK and h0 ..... h- 1 that are obtained in Step 5 after the

termination of the iterations determine the system. Step 1 and Step 4 make
use of the Projection Theorem and result in E{XN+Ig(XJ)l -



N
L hN -nEg(Xn )g(Xj), j=l....N. Step 2 makes use of Eq.(5). Step 3 also

n-1
makes uLS of Eq.(5) and results in

N N [2EhXbX1 K1

n-l N' ahN hNm Efbj (Xn)bj (Xm ) I + akE{bj (Xn)bk(Xm)}
n=l [ k= 1

N k#j

= 2EhN E{XN+lb (X)} , j=l,...,K.L iN-n NI n
n=1

IV. EXAMPLES

In this section we consider a particular parametric form for the ZNL

and a specific model for the random sequence. The iterative method described

earlier is used in this case to determine a filter of the form of Eq.(l).

We also determine the mean squared error resulting from use of the optimal
filter and that resulting from use of the optimal linear filter. Perfor-

mances of the filters are compared and it is seen that in several instances

the improvement in mean squared error of the suboptimal filter over that of

the opt linal linear filter is a significant fraction of the corresponding

improvement of the optimal filter over that of the optimal linear filter.

Assume that we have knowledge of the regression function

r(x) = EtXIXNx (6)

Notice that if we choose g(x)=r(x) and

h = 1,n=O
n O, n#O

then the estimate would be the same as that of the optimal filter based on

the most recent observation. If we were to use the Projection Theorem to
choose a different weighting sequence th ), we might do better. It seems

n
reasonable to expect that if we were to parameterize g(.) in such a way that

by proper choict- of the parameters we would have g(x)=r(x), and then use

this parameterlzat lon of th. ZNI. in the iterat[ve technique described
earlie(r, we might determine a system of the torm of Eq.(l) exhibiting very

good performance. This is how we wilI choose the ZNL in this section.
As a model for the random sequence {X ,n=l,2 ...} we will assume that

n

X n = (Z) 2k+l (7)

where {Z nn=l,2,...) is a zero mean stationary Gaussian process with unit

variance and autocorrelation function P(.).

First we will derive an expression for the regression function of

Eq.(6) when the random sequence is given by Eq.(7). Using results in [5],

we have that

E{X jx E N+l) 2 n
N+1 N E{2. )2

AE [() nbn bn(Z Ni n=0

= ~[~~ bn~( ( ) /(2k+l)

n=O
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where the series are mean square convergent, the constants {b n  are given by

bn =(2k+l 8 (x)exp dx (8)

and 0 is the n-th normalized Hermite polynomial given byn

n (x) = n exp )-A expn /n/! (2 dxn

We see from Eq.(8) that 1) =0 for n.2k+l and, in fact, the b 's can ben n

obtained from the relation

2k+1 2k+l(x) 2kl= E bn0(x)

n= n

For example, for k=l,

I3, n=

b /6, n=3
0, n~l,3

and r(x) is given by r(x) [1(1)]Ix + 3p(1) (-[p12) 1/3

For k=2,

l15, n=1

106, n=3
n 2/-30, n=5

0, n#1,3,5

and r(x) = [p~i)] 5x + 10[1(M] 3 (I_[p)(1)]2) x3/5 + 15P(l) ( _[P(,)])2x1/5

In general, for an arbitrary positive integer k, it is easily seen that r(-)
has the form

r(x) = c k+X + ck (x) (2k-l)/(2k+i) + ck-l(x) (2k-3)/(2k+l)

+ .+ Cl (x) 1/(2k+l)
+ c Ix)

where the ci's are constants that can be determined using the above procedure.

Thus we choose the ZNL g(.) to be

k+l

g(×) - k+ ai W)(21-1) /(2k+1)

i=lI

where the parameters a. are to be determined by the iterative procedure. In

utilizing the iterative proctdurc we encounter the need for the knowledge of
moments and joint moments of {Z n (see [6)), which are given by::il n

F{(Z)P} = 
11 " 3 " 5 ... (p-1) for p even

0 for p odd

-- - - - - - -



E-l _P()]2 r-l -,)(-l,) when)E(Zn) (Zn+i)f = r,s, (r+s) is even (9)

0 when (r+s) is odd

Observing that w(l,l,i)=p(i) and o(2,2,i)=l+2[p(i)] 2 , all higher order
joint moments can be calculated using Eq.(9).

In order to compare the performance of the suboptimal estimator with
that of the optimal estimator, we have obtained expressions for the mean
squared error associated with the optimal estimator. For the optimal system
we are interested in

E)( 2k+l Z . .liE (N+ I  zN 9.. . 1

Notice that this is the (2k+l)-st conditional moment and the conditional
distribution has the functional form of a Gaussian distribution. Thus the
minimum mean squared error follows using standard properties of the Gaussian
distribution (see, for example, [7]). For k=l we find that the minimum

mean squared error is given by 15- PI9E{Y + 6P MY } + P EfY

and for k=2, the minimum me.an squared error is given by
6F 4 2 6 3 8 4 101945 225 Ey + 3001 E(Y 4 + 130P E{Y I + 20P IE{Y } + P IE{YI

In these expressions P is a constant and Y is a normal random variable with
2 2

zero mean and variance y . The constants P1 and y are defined as follows.
Assume without loss of generality that the correlation matrix R associated
with ZI .... ,N+l is positive definite (if it is not, the data can be re-

duced to achieve this result). Then PI is the reciprocal of the element in

the lower right corner of R- . Denote the first N elements in the last row

of R- I as rl,...,rN. Then

2 N 2 N-I m
r= Cr.) + 2 r - Nn+lr mn+lP(N-m)

i1l m=l n=1

The mean squared error associated with the optimal linear filter can
be obtained in a straightforward fashion.

In the following tables results are presented comparing the suboptimal
filter to the optimal filter and the optimal linear filter. Several
correlation sequences for {Z P are considered, both the third power and the
fifth power of Z are used as models, and examples for two observationsn

and five observations are given. In these tables LI, L, and Lmin are the

mean squared errors resulting from the optimal linear filter, suboptimal
filter using a ZNL, and the optimal filter, respectively. The quantity
nI is the percent of decrease in L when the suboptimal filter using a ZNI

is employed, i.e. nI = 10(1, -L)/L . The quantity n2 is the percent (f

possible improvement in L Iising the optimal filter, i.e. n2  = 100(.1-l .mi)/l.I '

The quantity ri is the normalized percent of improvement over the litiar
filter given by the suboptimal filter using a ZN!., i.e. j = 100 rl/t" =
100(L -1.) / (L - L in ) .

I~~~~~~ -m| l nlII / i n|II l -
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P(l) p(2) p(3) p( 4 ) p(5)

1 .75 .575 .45 .35885 .291

2 .885 .7887 .70762 .639 .5805
I .55 .315 .187 .11445 .07183
4 .55 .195 .319 .2b885 .23023
5 .425 .2 175 .14675 09448 .06207
6 .8333 .6b66 .5 3333 .1666
7 .5787 .2963 .125 .037 .00463

8 .4822 .1975 .0625 .0123 .00077

Table 1. Correlation sequences corresponding to Tables 2-5.

m.1  t. 1min tI T2 3

1 0.1983 8.8614 8.8581 3.6 3.69 97.3
2 5.1744 5.0622 5.0599 2.16 2.21 97.6
3 12.5987 12.1084 12.108 3.89 3.89 99.8
4 12.3196 11.9216 11.8952 3.23 3.44 93.7
5 13.6849 13.2957 13.293 2.84 2.86 99.1
6 6.9247 6.6228 6.4926 4.36 6.23 69.8
7 12.2903 11.132 11.7259 4.54 4.59 98.8
8 13.3219 12.8142 12.8123 3.81 3.82 99.6

Table 2. Mean s.quared errors and percentages of improvement for k 1.

I1. il 1 2 I 3

1 727.42 704.58 704.22 3.13 3.18 98.1
2 453.78 444.78 444.49 1.98 2.04 96.7
3 887.49 859.95 859.9 3.1 3.1 99.7
4 879.44 854.59 851.86 2.82 3.13 89.8
5 920.93 899.7 899.43 2.3 2.33 98.5
6 584.57 564.58 550.99 3.41 5.74 59.3
7 876.33 845.86 845.24 3.47 3.54 97.7
8 910.86 884.62 884.42 2.88 2.9 99.2

Table .1. Mean squared errors and percentages of improvement for k = 2.

h0 h 1 h2 h 3 h4 a 1 a2

1 .6115 .0127 .008 .0059 .0094 1.519 .6811
2 .7899 .0084 .0064 .0051 .0132 .674 .862
3 .4026 .0093 .0049 .0029 .0024 2.7896 .4114
4 .3654 .0687 .0431 .0297 .028 2.4749 .4334
5 .2827 .0407 .0164 .0076 .0047 3.3779 .2656
6 .776 -.0234 -.0175 -.0111 -.0662 1.2015 .7635
7 .4476 -.028 -.018 -.01 -.0015 2.775 .4375

8 .3505 -.0247 -.0121 -.0032 -.0017 3.342 .3215

Table 4. rhe cot ficients a4 of the nonlinearity g(x) - a 2 x + , I 'x and

the h. s ol thie suboptimal systom lor k I 1.



h0  h h2  h h4 al a2 a3
h0 h1 h2 h,3 h4 a1 a2 a3

1 .4779 .0119 .0063 .0042 .0052 4.0527 3.7727 .493

2 .7065 .0097 .0067 .005 .0093 .7136 2.032 .7585

3 .2563 .0059 .0028 .0017 .0014 15.173 4.5019 .196

4 .2466 .0472 .0282 .019 .017 11.733 4.465 .1966

5 .162 .0227 .009 .0043 .0026 23.858 3.802 .0839
6 .6534 -.034 -.0234 -.0136 -.024 2.742 2.9562 .6302
7 .2864 -.0184 -.0096 -.0054 .0002 14.7841 4.5769 .2267

8 .2032 -.0139 -.0065 -.0019 .0008 22.373 4.2663 .128
3/5 1/5

Table 5. The coefficients a. of the ZNL g(x) = a3x + a2 x + a 1x andI

the h.'s of the suboptiimal system for k - 2.

p(1) o(2) 10  h a a 2

1 .9 .7 1 1.2377 -.4974 .9333 .82983
2 .8 .5 2 .8837 -.3001 1.6639 .6923
3 .8 .3 3 1.095 -.6467 2.3987 .6089
4 .7 .1 4 .7927 -.4786 3.2982 .4545

Table 6. Correlation Table 7. The coefficients a. of the ZNL
sequences corresponding 1/3 1

to Tables 7-8. g(x) = a2x + a x and the h.'s of the

suboptimal system for k = 1.

I K I. I nrl f 2 in13

1 3.7487 3.494 3.1354 6.79 16.3 41.65
2 7.566 7.02/1 6.7406 7.12 10.9 65.32

5.7804 4.371 1.0231 24.38 82.3 29.62
4 8.9825 7.1689 4.9674 20.19 44.7 45.16

Table 8. Mean squared errors and percentages of improvement for k = 1.
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A NOVEL APPROACH FOR DESIGNING NON-LINEAR DISCRETE TIME FILTERS: PART II
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ABSTRACT

We propose two methods for designing nonlinear discrete time filters.
The first method involves an iteration procedure that for simple cases,
converges in one or two iterations. However, convergence problems in this
approach for higher (> 1) time order filters leads to a second method which
is based upon an augmented Hilbert subspace on which the orthogonality
principle can be easily applied.

I. INTRODUCTION

In many problems, it can be shown that a non-linear filter either out-
performs the linear filter or performs a function not possible with a
linear filter. One example of this is the homomorphic processing of speech
which utilizes a linear process followed by a non-linearity that is fol-
lowed by another linear processor [1].

This paper is concerned with the non-linear prediction problem. We
consider the system shown in Fig. 1,

m LT I
E ai  x1  DIGITAL

=0 , ,FILTER

Fig. 1. Non-linear System Under Study.

where we investigate two different methods of design. In Section II, we
consider an iterative scheme and give examples of its use. In Section
III, we develop a new non-iterative technique motivated by the poor per-
formance of the iterative scheme found in several non-trivial examples. It
is also worthwhile to point out that in Part I of this paper, results are
obtained based on complete knowledge of the process statistics, while in
Part II we only assume that we have a finite sequence of samples from the
random process. We also require the random process to be Wide Sense
Stationary (WSS) and to have finite higher order moments.

II. ITERATIVE FILTER DESIGN PROCEDURE

We propose the following iterative procedure for determining the MMSE
filter coefficients for the system of Fig. 1.

(1) Assume the non-linearity is not present and design the
optimum (Wiener) linear filter.

(2) Keeping the unit pulse response of the linear filter con-
stant, compute the polynomial coefficients requi-red to
minimize the mse.

(3) With the polynomial coefficients fixed, redesign the
optimum linear filter with the polynomial non-linearity.

(4,) Repeat Steps (2) and (3) until convergence.

PPAeted at the. Sixteenth Annua At./uto Conje.nce. on Commun.eaton,
Con wZ, and Computing, Octobe't 4-6, 1978.



Co.sider the example where we have a second degree polynomial and a
first order linear filter as shown in Fig. 2.

Fig. 2. Example of Non-linear System.

Step I tells us to design the optimum linear filter assuming the non-
linearity is not present. This linear predictor is given by

xn hI xn-!

where xn estimate of the nt sample of the r.p. x(t)

x actual value of the (n-j) th sample of x(t)

Using the orthogonality principle

E{(x n - h1 xn I ) x n I  0

we find the optimum linear filter to be

R ft()(l)Rx(

where R (j) E(x x . and we have made use of the fact that the r.p. is
W.S.S.x n n-j

Step 2 tells us to compute a ,a and a2 to minimize the mse keeping
Sonstant. This non-linear predic or is given by

% ac h1 [a0 + aixn I + a2 x2 n-1 (2)

Using this expression in the mse equation

mse - E{(xn - xn) 2 )

we have that

mse E(h I (a0 + alXn 1 + a2 X2 1) - xn] 2 )

We minimize the mse with respect to the filter coefficients ao, a,, and a2
by taking partial derivatives

amse - 3mse -0 amse 0a = O , a1  =O,;a2

Then the coefficients ao, al and a2 that satisfy the following set of
matrix equations are computed:

tx I(n X n-1) h I E~x n_-1) hi E~x2-_I }  h I Ex n.,) l  a, 2r ~ x~ 3
1 hh 2

n. LXn- I E(xn-I} h I E{X n_. I  h I  Jn, ai~ nh IE(x n.I h E(x -) h~ (3

Step 3 tells us to compute the new optimum linear filter with ao, a1 andK a2 constant. The orthogonality principle together with Eq. (2) gives

([x n " h I (a 2 x 2 + ax a)] X O
.n1 2 I n + 0 n-i



and we find the new linear filter to be

E{xX 1  
}

I)hl M- 2, (4)

Sa2 E(X 3 ) + a E(x._ + ao E{x I

L If we solve Eq. (3) for a0, al and a2 and substitute these values into Eq.A (4) we find
R (1)
hh (5)
x

where the second equality follows from Eq. (1). It is seen that for the
non-linear predictor of Fig. 2, the iteration procedure converges in one
iteration for an arbitrary W.S.S. r.p. x(t) with finite first, second and
third order moments. As an example, consider the following signal

nn X I n 2

where un  are lid, uniform (-1, 2). We can easily obtain the optimum MMSE

predictor [2], [3] for this signal by utilizing the conditional expectation

n E{xn Ixn-' X n-2' "'

-k I X2nI + k2  (6)

since E{u nix n, x n2, ...I = 0. If we let p1 - .005, k, - -1.74 and

k - 0.87, the linear filter gives a mse - .293. Calculating the required
m"nts needed for the solution of Eq. (3) empirically with a computer, we
find the values of ao0, a, and a2 to be

ao - -3.960261

aI - .005525

a2 7.913872

By computer simulation, we find that the non-linear system gives a

mse - 2xO-6 , a significant improvement over that obtained with the linear
filter alone. It is possible to analytically solve for the optimum pre-
dictor coefficients; we find the values of a a nd a2 by equating Eqs.
(2) and (6) and also using Eq. (1). The values are found to be

0 -- 3.960017
lOalI= 0

a2 - 7.920035

This result agrees very well with the computer simulation.

Next, consider the example as shown in Fig. 3.

hl~.
2h lxn-I

a ax 2 +h 2Xn.2

Fig. 3. Example of Non-linear System.

We again apply the iteration procedure as outlined by steps (1), (2) and
(3) above. Applying the signal



x k 2 + 2_ (7)xn " I Xn-I+P1
1 1

where {u are lid, uniform (-1, 1), we can easily show the procedure ter-
n22

minates after two Iterations. However, if we use a general second order
polynomial

a2x
2 + aIx + ao

simulation with the signal of Eq. (7) indicates that convergence is very
slow unless the initial choices of a2 , al, ao , hl and h2 are close to the
optimum solutions, and then convergence occurs in 2 to 3 iterations.
Simulation also shows strong dependence of the final solution on the ini-
tial choices of a2, a,, a0 , h1 and h2. In an attempt to force the solution

to the optimum result for the general case, we propose the following
modified iteration procedure.

(I) Set h ! I h 2 ..... h k ' I

(2) Compute the polynomial coefficients required to minimize
the mse.

(3) Design the optimum linear filter using the polynomial non-
linearity.

(I.) Repeat Steps (2) and (3) until convergence.
But even with the modified procedure, simulation indicates sluggish con-
vergence. Fig. 4 demonstrates this convergence with plots of mse versus
number of iterations for the polynomial non-linearity a2 x

2 + a1 x + ao .

.0 (A)

S •oil

E

0(C)

15
N (number of iterations)

Fig. 4. Demonstration of Convergence. Curve (A) shows mse vs N
where the initial values of hl and h, are the optimum
linear filter coefficients. Curve (B) shows mse vs. N
for the initial values h1 = h2 - 1. Curve (C) shows
rose vs N where the initial values of h1 and h2 are the
optimum non-linear coefficients.

It appears that this method only works well for very simple structures and

for more general cases another type of design procedure is required.

I1. NON ITERATIVE FILTER DESIGN METHOD

In Section II, we have studied an iterative procedure for the design of
the non-linear predictor in Fig. I. This system leads to a prediction
better than that obtained from the linear predictor, although in many cases



the improvement is not significant. We would, however, like to retain the
basic structure of Fig. 1, which can also be implemented as shown in Fig.
5 and 6.

m IZhi
-( ~DELAY m -

+m {- xh)
i0 h i,k-I x

mi

Eh lk

i-0

Fig. 5. Alternate Structure to the Non-linear System of Fig. 1.

Constant Due
To X° Terms.

Fig. 6. Equivalent Structure to the Non-linear System of Fig. 5.

We can now express the non-linear predictor of Fig. 5 as

k I
Jul h1 1 i X ] (8)

Defining h 0 hoJJ!o
0

where the h are the constants multiplying the Xn. terms, we can also
oJ J

write Eq. (8) as
k m i

h Ih + E Z h x (9)Xn ha J- it J- x n-i

We now minimize the mse with respect to the coefficients h and h0 where

mse E{(x n - Xn)2 }  (10)
by setting

amse 0 , amse
'h0 ij O, i I 1,2,...,m Jho i



Consider the structure where m - h = 2. Substitpting m - h - 2 into Eq.
(9) we have the non-linear predictor

-h2 + h2X 2)
Xn o Xn-I + 21 n- + h1 2 X n-2 2 2 n-2

When we substitute Eq. (11) into Eq. (10) and minimize the mse by taking

derivatives, we find the coefficients must satisfy.

1 E x E~x2  1 2
n-i1 n-i n E~ 2)X

Ex E{xn.I E{xn. }I EX 2  2_
n nInInl n- E -xnx2I 1

EXn-i} E{Xn-i) E{xn4_ !) E{x 1X 2 } E{X X2 }2  h2 l
En. I Xn I} n I EXn I n.2 } En- I n-2 h21

E{x E{ 2  E{x 2 E(x2 E(x 31
n-2 Xn-l'n-2 } n In 2 n -2 n-2 22

Jlx n_ 2 m - _2 ExnIxn ~ ) Exn )h2_

E

{x n }

- X2_ (12)

E{XnXn.2)
2

E{xnx 2 )L n Xnn 2 }

It Is seen that the solution requires knowledge of the various moments and
cross moments. Since the r.p. is assumed W.S.S., we can apply well known
procedures to estimate empirically these various moments. Now consider the
example where the signal is generated by use of the equation

X k x2 1 + k2 + p1 Un;n I1 -

(un) are lid, uniform ('i, 2 From Eq. (6), we know that the optimum

predictor is given by

k x2 1 +k 2  (13)

This optimum result corresponds to the solution ho - k2 , h21 -ki.

h11 *h 1 2 - h22 - 0.

It is easily shown that this solution satisfies Eq. (12), and hence
Eq. (12) leads to the optimum result for the signal in Eq. (13). Likewise,
for the general polynomial signal of the form

S P
x n E E Y 0x -  + PI un (14)x a-O 0 

Eq. (8) again leads to the optimum solution. These results can also be
Interpreted In an alternate way. First, define a Hilbert Space over the
probability space and the set of r.v. x such that [4], [5]

E{xI2} <I

with the inner product defined as

< x, y > E(xy}



We then generate the smallest subspace that contains the elements of the
form ( i-

(Xn) "P

where xn is the n
th sample of the r.p. x(t) and Vi is chosen so that

E{(X) - 0 

The condition

E(I(xn) I - UI1 2 <0.

implies all moments of the r.p. of interest upto and including the (2m)th

moment (m D highest degree polynomial used in the predictor) be finite.
Using this augmented subspace, we then have a predictor for xn , denoted by
Xn, given by

m ki

E h .(X - ) (15)
i=0 j=l ij n i

Expanding Eq. (15) and grouping all the constant terms together, the
predictor for xn becomes

m k
xn =o il iij Xn-j (16)

which Is identical to Eq. (8). We can use the orthogonality principle to
determine the hij's. Consequently, we must solve the following set of
equations

m k
E{(x - ho - Z : h ijX nj)x n p }  0 L - 0,1,2,...,m (17)

When m - h - 2, Eq. (17) leads to Eq. (12). Again consider the signal

xn  --. 7 x 1 + .87 + .005 un 
where {u I are lid, uniform (-1 ,) Simulation for the case k - I shows

n 2' 2~
excellent agreement with the known optimum result. However, the deter-
mininant of the coefficient matrix vanishes for the case k - 2. This is
explained by the observantion that the signal can also be represented as

x = -1.74 x2  + .87 (oi+s) + .005Xn  n- • n

where a+0- 1. Since

- -1.74 x2 + .87 + .005
then

.870 Ox + 1.74 ex 2  -005 OUn-B n-2 . 0 8U
hence

X xn._ + . 8 7c'+ OX + 1.74 O n-2 + .005 u - .005 OUn-

We note that there are an infinite number of equivalent signal representa-
tions and therefore an infinite number of equivalent predictors. This
leads to the following design procedure

(1) Set m. (highest desired polynomial degree)



(2) Set ks1. (k _ number of past samples used In the prediction)

(3) Solve for the hi,.

(4) Set k-2. Compute the determinant of the coefficient matrix.
If the determinant Is zero, terminate; otherwise proceed to
step (5).

(5) Solve for the hij.

(6) Continue incrementing k, either until the determinant
vanishes or a desired value of k is reached.

We also note that functions other than polynomials can be used in the
predictor. In this case, the predictor is of the form

m k

n I j=l hi. fi(Xn-j)

where we assume the r.v. fi(x n-.) possesses the proper second moment

properties. In addition, the fi(x) should be continuous and bounded over
the range of arguments to insure that the augmented subspace is complete
and the condition

E{Ifl(x)121 <

Is satisfied.

IV. SUMMARY AND CONCLUSIONS

In this paper, we investigate two methods of designing non-linear dis-
crete-time filters. The first methods makes use of an iterative procedure,
that is alternately computing the linear filter coefficients and the non-
linearity coefficients. We show how this procedure performs by applying
it to several examples. Because the resulting filter design is dependent
on the initial conditions before iteration, this method is only applicable
to certain problems. For example, this procedure appears acceptab'e when
the starting point of the iteration is close to the optimum design. We
then present a second non-iterative procedure that makes use of the
orthogonality principle over an augmented subspace. The performance of the
resulting design is tested by use of several examples and is shown to
provide excellent results. This method appears to work well even when the

bgeneral form of the optimum filter is not known a priori.
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* QUANTIZATION OF BIVARIATE CIRCULARLY SYMMETRIC DENSITIES
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ABSTRACT

The problem of quantizing a two dimensional random variable whose bi-
varlate density has circular symmetry is considered in detail. Two quan-
tization methods are considered, leading to polar and rectangular repre-
sentations. A simple necessary and sufficient condition is derived to de-
termine which of these two quantization schemes is best. if polar quanti-
zation is deemed best, the question arises as to the ratio of the number of
phase quantizer levels to that of magnitude quantizer levels when the prod-
uct of these numbers is fixed. A simple expression is derived for this
ratio that depends only upon the magnitude distribution. Several examples
of common circularly symmetric bivarlate densities are worked out in de-
tall using these expressions.

I. INTRODUCTION

Consider a two dimensional random variable X whose bivariate density
Is circularly symmetric and we desire to represent this quantity by a
finite set of values. One possible representation of X leads to a
Cartesian co-ordinate system expression wherein we Individually quantize
the two rectangular components of the random variable. Another common rep-
resentation leads to a polar co-ordinate representation where we quantize
the magnitude and phase angle of X. These two representations are mainly
chosen for their computational feasibility and ease of implementation.
Other authors have considered the general problem of multidimensional quan-
tization; Zador [1] derives an expression for the minimum error achievable
by a multidimensional quantizer for an arbitrary density, but no Insight
into the required quantizer structure is attained. Chen (2] describes a
technique whereby one can use a recursive computer technique to solve for a
11good" quantizer, but the optimality of the final solution is not assured.
By constraining ourselves to circularly symmetric densities and also to
either Cartesian or polar co-ordinate systems, it becomes possible to re-
duce the optimal two dimensional quantization problem to one dimension.
Max [3) develops necessary conditions for the optimality of a one dimen-
sional quantizer. Panter and Dite (4], give a formula for the asymptotic
error to be expected for optimal mean square error quantizers (of suf-
ficiently smooth input densities).

In Section II of this paper we obtain a simple criterion by which to
determine whether polar format or rectangular format gives a smaller mean
square quantization error. It is shown for some very important cases,
notably for the Gaussian bivariate density, that polar format is asymptot-
ically superior.

4 If polar format is to be used and the product N - NeNr Is fixed, where
Ne and fr are the number of phase and magnitude quantization levels, re-
spectively, the question arises as to the optimum ratio Ne/N r. We derive
a simple expression for this ratio that depends only upon the magnitude
density.

In Section III, we provide several examples of common circularly sym-
metric densities (e.g. marginal densities are Pearson II, Pearson VII,

slnusoidal, and Gaussian) and we address the question of whether the rec-
tangular or the polar format scheme gives a smaller quantization error.
P'tented att e Sixteenth AnuatZ A.et.on Conde.c.e on Communication,
Cont .to, and ComputZng, OetobeA 4-6, 1978.



II. DEVELOPMENT

Consider the mean square quantization error Ep of a polar format rep-
resentat ion,

NO Nr c. a rJe jd2 fr W dr d6
E - E f IreJ be 2 -rbr) d d)
Sp j-III c i a-

Implicit use has been made of the fact that in circularly symmetric bi-
varlate densities the magnitude random variable with probability density
fr(') is independent of the uniformly distributed [-w,r] phase random
variable. The bi and dj are the output levels of the magnitude and phase
quantizers corresponding to input levels lying In the intervals (ai.1, ail
and (cj-l, cj], respectively. I.t is shown in [5] that the optimal phase
quantizer is the uniform quantizer. This allows us to simplify Eq. (1);

N a sin N8

E Z I [r 2b 1-2rbi - e] f(r) dr (2)
P I-1 a1_I

8

Differentiating with respect to bi, we find the optimum bi is

sin fa1 rf(r) dr

b W ' ' ai- (3)

N f f(r) dr
ae1-

1

The equation given by Max for the output levels bf of an optimal one dimen-
sional magnitude quantizer is found in [3] to be

a1
f rf(r) dr

a1
b " ' , ' . (4)

I Ff(r) dr
a1 1

where the optimal input interval endpoints af (for the one dimensional
case) satisfy

b" + b-+

a- 2

If we minimize Eq. (2) with respect to the a , we then arrive at the
necessary condition (for the two dimensional cases

bI + b1 +I  b' + bj4 1  a

1t 2
sin -(

N_

This equation indicates that the quantizer interval endpoints for the



optimum magnitude quantizer in the two dimensional case is the same as the
quantizer interval endpoints for the optimum one dimensional quantizer.
From Eqs. (3) and (4) and the preceeding discussion, we have the following
relationship between the output levels b' and b

It

. .. bI  • (7)
N9

b' sin N

Consequently, Eq. (2) becomes

sin- N

E- r2- 2E- (br)2 f a f(r) dr , (8)
i-i a i'

where E{-) is the statistical expectation operator. In (6] it is shown
that the mean square quantization error for a minimum mean square error
quantizer Is simply the input variance minus the output variance. If we

N
denote by Ex the mean square quantization error produced by an optimal N

level quantizer for the random variable X, we may rewrite Eq. (8) as

sin sin
E ( )2 E r + (1 8 2 ') E(r2} (9)
p f r W

N _N
Our problem now Is one of characterizing the quantity Ex Panter and

Dite (4] give a formula for the expected error of a minimum mean square
error quantizer with a large number of output levels and a smooth input
density. This formula is

EN K 
-.

N

where

[f f(x) 1/3 dx]3

12 (10)

Roe [7) also derives some asymptotic formula which were later used by Wood
(8] to rederive Eq. (10). Roe's formula depend on the truncation of a
Taylor series expansion of the input density. Wood, in his formula, ex-
plicitly states that the input density and the first few derivates (up to
order five In some cases) must exist and be continuous. Panter and Dite,
in their derivation, require that as the Input intervals become very small,
the density function may be approximated as a constant over each Interval.
in [I] it is shown that a sufficient condition for Eq. (10) to hold is that
f(x) be Rlemann integrable and that E{x 2+ 61 < - for some 6 > 0, in general
a much less severe restriction than continuity or differentiability.

We make use of the approximation

sin x 2 x2

E) nn E (9 as)
and of Eq. (10) in order to reduce Eq. (9) as
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If we denote as N the total number of output levels allowed to represent
the two dimensional random variable X, we have the following relation,

N-N r Ne . (13)

Since Kr > 0, It is simple to show that Nr - O(N1 / 2 ) and Ne O(N 1/2 ) by
differentiating Eq. (12) and solving for the optimal quantities. Making
use of this fact and Eq. (13), we may, assuming sufficiently large N, write
Eq. (10) as

KN 2  2

P N2 3

This Is then optimized with respect to N0 and yields the optimal N
2 as

2 2w 2 1/2N (-K NG. (15)
0 3Kr

This leads to the following expression for the minimal attainable asymptot-
Ic polar format error,

(Ep) opt. (16)
3opt'Y

Now consider the problem of optimally quantizing the random variable X
In a rectangular format. The mean square quantization error, Ex, of this
representation is given by

N N
x y gj

Ex  I [(x-f) + (y-h.)2 ] fx(x,y) dxdy (17)
iI J-1 l gj-I ei-

where Nx and N. are the number of levels in each of the respective
orthogonal random variables. The other notation should be clear.
Equation (17) may be written as

N N

Ex a E x I (x-fi)2 f xX) dx + Z y $ g J  (y-h )2 f y (y) dy . (18)
S1-1 e 1  ' I J=l gj-l J y

By symmetry arguments (since f x) = fy(X)), we may argue that
1/ Nx -
1

N - N. - N 2  The quantizer that minimizes the above equation is simply
the minimum mean square error quantizer for each of the two components.
Therefore, again using Eq. (10) we have for large N.

2K
ExEx =-. N

where

[1" f x) 1/ 3 dx]3

Kx 12 (19)

Comparing Eq. (19) and Eq. (16),we say that polar format is asymptot-
Ically better than rectangular format if and only if
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or

K > .- V (20)

In other words, if the inequality is satisfied and the original Input
probability density is Riemann integrable, then we are guaranteed that
there exists an N1o such that for every N > No, polar format quantization
will perform better than rectangular format quantization.

If polar quantization is deemed best for a particular density, then
what is the ratio Ne/Nr that provides the smallest total error? This
question is answered with the use of Eq. (15); we find

N 2  N8  -- (1

(NL)ot ( e ) " Kr (21)
op (r opt F

III. EXAMPLES

For our first example, we calculate the relevant parameters for a
random variable whose marginal density is of Pearson Type VII. This dis-
tribution is a generalization of Students-t distribution. The bivarlate
density is

f(x,y) - 2V(v-l)v
w (2(v-1) + x2 + y 2 )V+l 1 "<x,y<m (22)

(with v 1 I in order to assure finite variance) and the marginal density
appears as

f(x) - 2Vv-1 )v r(v+l/2) < X x *(23)
r r(v) (2(v-1) + x2)v+1/2)

where r(.) is the gamma function -and where we have normalized the distribu-
tion so that f(x) has unit variance. The magnitude density is always de-
rived by substituting in r for 2 in f(x,y) and multiplying the re-
sult by 2wr, as shown by a simple change of variable. Eq. (23) yields
after some tedious algebra

K- (24)
x 12 B( v-1) (24)

2'
where B(-; .) Is the beta function. We perform similar operations with the
magnitude density to yield

v(v-K) 2 B( v ] (25)

In Fig. I Kx (solid line) and4 w (dotted line) are plotted as a func-

tion of v for values from 1.1 to 21.1. As shown by this graph, polar for-
mat Is always asymptotically best for this class of distributions. An in-
teresting point about this set of distributions is that in the limit as
v - - Eq. (23) converges to a unit variance Gaussian density. Therefore,
taking this limit in Eq. (24) and making use of Stirling's approximation,



we have

Kx r 1. 2.721 . (26)

Wood [8] estimates this number as 2.73 which Is close to our derived value.
From Eq. (25) we have similarly

Kr - (r()) 3 - .93l ,(27)r 3
which Is the parameter for the Rayleigh distribution obtained in the limit.
Using these two values in Eq. (20), we conclude that asymptotically polar
formatting is better than rectangular formatting for Gaussian bivarlate
densities. As a matter of interest, when we substitute the value of Kr
found in Eq. (27) into Eq. (21), we find the optimal ratio Ne/tir to be
2.659. Pearlman [9] using distortion rate theory states that this ratio
should be > 2.596, which is in agreement with our result.

For the next example, consider distributions of the Pearson II class.
The bivarlate density is

fix,y) v(2(v+l) - (x 2 + y2))v- (28)
- ' l)U(i(v+l) -(x + y2)) , (8w2V(v+l) v

where v > 0, and U(-) is the unit step function. The marginal density is
I

-fx) v 2-f~) rv~) 2( -l U(2(v+l) - x 2 ,

2v(V+l)v /w r(v+!)

For v - 1/2 we find that f(x) has a uniform distribution. For v - 1, we
have that the bivariate density is uniform over a circular region in the
plane. Using Eq. (29), we find

1Bi 2v+5)]3
K -* (30)x 12 B(2 ; v+()

2'
From the magnitude density we derive that

K V(V+I) 2 v2)]3(1Kr 4- [B(1 ; 3 (31)

In Fig. (2) can be seen a plot of Kx (solid line) and j r (dotted line)

as a function of v for values from 0 to 10. It should be noted that Eq.
(29) also converges to a Gaussiarn density as v - -. it is a simple matter
to check that the expressions in Eqs. (30) and (31) indeed go to the cor-
rect limits. From the plot it can be seen that for values of v in the In-
terval (0.0, .4) polar format is better. In the interval (.4, 3.635) it is
seen that rectangular is better, and from 3.635 to - polar again is better.
It appears then that for the circularly symmetric bivariate density whose
marginal density is uniform,we have the interesting result that rectangular
format is asymptotically better than polar format.

In the theoretical development and in the examples considered so far,
we have constrained the class of quantizers considered to two different
types, the rectangular format and the polar format. In general, neither
of these schemes will be optimal for an arbitrary two dimensional random
variable with a circularly symmetric probability density. Zador (1] gives
an expression for the asymptotic mean square error Ez of the optimal two
dimensional mean square error quantizer. This equation is



Ez -c N, (32)
zzwhere

2
C 5' f (Xy) 1/2 dxdy (33)

For the Pearson VII density Cz = 4.0307 v/(v-l), for the Pearson II density
Cz = 4.0307 v/(v+l). Since in the limit as v becomes large, both of these
classes of densities converge to the Caussian, the smallest error attainable
for a two dimensional normal random variable is approximately 4.0307/N.
The best that we can do with a polar format representation Is 4.95/N and
the best that we can do with a Cartesian format representation is 5.442/N.
There is certainly room for improvement here, however, the important thing
to note is that the structure of the polar format quantizer is known while
that of the theoretical optimum quantizer is not.

In section II it was stated that a sufficient condition for Eq. (10)
to be valid is that the magnitude density function be Riemann integrable.
For most density functions of interest in modeling physical systems this

q criterion is met. One group of densities that doesn't meet this condition
is the set of atomic densities, i.e., densities for which probability mass
is contained at a single point. In a circularly symmetric bivariate den-
sity, the phase must be uniformly distributed (-w,7]. The only quantity
that can be discrete is the magnitude distribution, I.e. we may have
'"rings" of probability mass distributed in the plane. Suppose we have a
single "ring" of probability mass, where the radius of the ring Is 1, i.e.,

F(r) - U(r-l) , (34)

where F(-) is the magnitude distribution function and U(.) is the unit
step function. The rectangular component marginal density is the sinusoidal
density

f(x) - u(l - x2  . (35)

This density function is Riemann integrable, hence Eq. (10) and Eq. (19)

are valid. This implies the rectangular format error is O(NI). Now con-
N

sider the polar format case. For Nr >. 1, Err 0 0. This implies the polar
-2format error for large N is O(N ). Clearly then polar format is

asymptotically better for this density. By extending this argument, we may
say that if P(r-O)0l, then for any bivariate circularly symmetric density
with an atomic magnitude density with a finite number of atoms, polar for-
mat will give a smaller asymptotic mean square quantization error than
rectangular format.

IV. SUMMARY
In this paper we have derived a simple criterion to determine whether

rectangular format or polar format gives smaller mean square error for
circularly symmetric densities. The optimal ratio of phase quantizer
levels to magnitude quantizer levels is also derived. Several examples
Including the Gaussian case have been studied in detail.

It Is interesting to note that polar format is not always better than
rectangular format even for the case of densities with circular symmetry.

This research has been supported by the Air Force Office of Scientific
Research under grant AFOSR 78-3605.
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QUANTIZATION IN SPECTRAL PHASE CODING

Kerry D. Rines and Heal C. Gallagher. Jr.

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

ABSTRACT max
and S - p A p-01, m-.

Spectral Phase Coding (SPC) Is a robust sub- P
optimum digital encoding scheme utilizing the The quantized sequence (#p) Is transmitted and
discrete Fourier transform. The quantization of used at the receiver to recover the original
the SPC sequence {(p) Is examined as an effective discrete signal. The reconstructed discrete

quantization of the spectral magnitude and phase, sequence is (e1
A new encoding technique called Prequantized {nn) { (o p- (3)
Spectral Phase Coding (PQSPC) is introduced. n n- e P.O

PQSPC exhibits the same robust characteristics This equation can be written In terms of the
as SPC with a reduction In HSE. For the case of equivalent magnitude and phase components at the
a double-sided exponential input density this receiver.
reduction in SE is 47.5% . ( ).- 19 F-I F " § is 'P i "i -)Y

n( • 2 e ae P)"M0(1
. INT RDUCTION

Spectral Phase Coding (SPC) Is a robust sub- w VI
optimum technique for coding a nonstationary or p . ( p+) (5)
large dynamic range discrete-time series into p
digital form. in previous work I, the per- We defIne 6 and jp to be the effective quaniz-
formance of SPC in a mean squared error sense atlon levels of 8p and yp that result when (lp)
has been evaluated. However, limited Insight is formed. The effective quantization errors of
is provided Into the effects of the various SPC ep and yp are defined In Eq. (6).
parameters on overall performance. In this
paper, we investigate the effect of converting p p p
the spectral magnitude and phase of the discrete d Y - (6)
signal into the SPC sequence (4,p) before quan- p p p
tization and transmission. In section i1, den- The effective errors ep and d. are the result of
sity functions for the magnitude and phase er- using l and Yp Instead of Op and yp to recon-
rors at the receiver are obtained. These re- struct tan) at the receiver.
suits suggest a method of improving the SPC on- It is also possible to reconstruct the dis-
coding algorithm. In section III, a technique crete signal by sending quantized values of op
celled Prequantizing is Introduced. The addl- and Yp directly. We define these quantized
tion of Prequantizing to SPC offers a substantial values to be O and YP and the resulting quanti-
Improvement in the overall system performance. ation error for this case Is

it. SPECTRAL PHASE COOING QUANTIZATION ERROR np -p - p

Spectral Phase Coding uses the discrete or Yp - • (7)
Fourier transform (OFT) to encode a discraite- The two sets of errorii tn Eqs. (6) and (7) are
time complex-valued random sequence {an)3" for colpared to determine the effect of transmitting
digital transmission. The SPC encoding and de- {,p rather than {6p) and R ) on the overall
coding algorithms are given here. A detailed performance. We find the efective quantizetion
explanation of the SPC procedure is available In errors ep and dp can be written as deterministic
[2). The spectral magnitude Ap and the spectral functions of the Individual quantization errors
phas. Op of the discrete sequence are given n0 and mp. This Is first demonstrated with two
be lcw simple examples. The quntizer has N levels

(cd ) r mA itpud -I uniformly spaced from 0 to 21 for both methods.fn n-O Ap • P-0 "x 1(1:

SPC encodes the magnitude and phase of the spec- " with output levels 0, . Let

truin by forming the sequence (i) given by p- 0.6 w and Yp - 0.. it, then we find that

op a yp ip-. W - 5 ' 0.5 W

*p44 - p , (o) 1 p -w p4" 0.2 W .
A Upon quantizing the value for p and *lp+. we

where yp . cos have

Pieented at the 1979 Condetence on In~o'm.izton Sei.c.u 9 Syt t~am, The John Ho7*nM Untvemit,
kitAch, 1979. To be pubfiAhed in Paoceet.ngA oS dLia Con6evtnce.



$PW ."0. 0p + -0.0. I f 1 f(n.m) dn d

sp p 0.5 ir
Consequently, m f )' "• -0.,1 if n. -. 0 1 7

d , -0 .1 W m p - -0 .1 ff X Ndp I+N

in this example. the effective quantization or- + X+d(
rors are the sam as the errors from direct r- T1! f(nm)
quantization. n NExample 2: nd 0x 0

N-4. Op - 0.7 IT, Yp " 0.1 IT; we find that Fd(x) f- fI f(n.m) dn d

I p 0.5 ff Yp N 0.0 N
Op-0.8 W p+.-0 6  . x V

So, N f(nm) dn de;p -I --0.5I 7- 0

e- 0.75 w y - 0.25w. w !

Consequently. f W f(n,m) dn de

ep -0.05 w np -0.2w 0

d -0.15 w mp - 0. 1t . (11)
• 1 , f(n,m) dn do (ll)

In this case the effective quantization errors 0 -0
have different values than the direct quantize- N
tion errors. We note that the difference be- We obtain similar results for 0 < x <.
tween np and eD Is IT/N and that the difference The general results given In Eqs. (10) and
between flp and dp Is also /N.

A detailed comparison of the two sets of (11) can now be used to determine the densities
quantization errors is developed In the Appendix. of the SPC error e and dp. The properties of
The results are given below: the DFT indicate that for a large block size M.

0 and Tp will be Independent with O uniformly
apn -1< n+M < ! and -! < n -m < d strlbuted (0, 2w). Therefore, we assume thatp p -p -nd mp-Nre statistically Independent and that

+i 2or n-m <- - nP fomly distributed (-wI/N. w/N). The

V It 2 < V- <2 - densities of the equivalent quantizatlon errors
- np-. np~mp <i or < np-mp , (8) apr/ nd do for the SPC case are given here. For

and < WA

d Np np-m p < fe(x) - . f f(m) *_ "f f(m) dmd 'p p~p< or ! < n- * --- 1 U

N N - p p - N - p p - N T.
2IT 2w - W 2w (9) i "1-mp- - on i o < n +m - (9) + f f(m) dm * I f(m) d,, (12)

Examining Eq. (8). we see that the effective and
phase quantization error ap is a function of both (1 , N f
the magnitude and phase errors np and Up. The fd(x) 0 + m mfN + ( )JN<0

same is true for the effective error dp. N )X)i fm(x) + %(X x>0. (13)The distribution functions of ep and dp can - ( [f

be evaluated in terms of the joint density f(nm) The density of mp Is, in general, dependent upon
by use of Eqs. (8) and (9). For x < 0, the statistics of the Input signal. For a large

Cx)r - -n <r) number of quantizatlon levels N, we can assime
e p N -N p N pnp-< the density of mp to be uniform (-w/IN vr/N). The

•~n N if * m < resulting error densities are shown in Figure 1.
P(n < n , n + The result Is confirmed by computer simulation.

"P{n < n ' ,V f(e) f(d)
S N , np m -)

This expression and a similar expression for
Fd(x) lead to ;he results below. For "N 0 i

Fe() f f" 1I f(nm) dn dm d0 m-A 0. o
it N N 0

Figure 1. Effective Error Densities.



Individual quantization of Op and Yp would yield expense of Increasing the NSE on S . We deter-
uniformly distributed error densities (-Tr/N, mine 0' as given below. Using Eq. (15) we
w/N) for the case described above. Therefore obtain

p

we conclude that preparing Op and Y for digital 2 . m

transmission by using the sequence 4p) repre- E(dp - 2
sents an Important element in SPC performance. N n-I m1 flu

Once we have evaluated the densities f(e)
and f(d) the calculation of the mean squared x E{cos nNp cos mNOp sin nNY sin MNYpL
quantization error for op and Yp Is straight p p p p

forward. We now present expressions for comput- (19)
Ing this quantization error directly. The ex- Thus the SE on Yp assuming SPC statistics and a
presslons are obtained by computing the Fourier large number of quantization levels N is
series expansion for the quantization error of 2 __-
g and using the result with Eqs. (2) and E{d E I (I + E(cos nNS 1) . (20)
).The effective errors ep and dp are 1N n.'7o 2 p

2 - From Eq. (20), we find that E(dp) Is minimized
p - - sin nNO cos nNY (14) forN n- n p p O 9;- K (21)

and p N .
n Applying these resultswe propose the follow"2 -Irn

dp - - L cos nNe sin nNy . (15) Ing coding scheme called Prequantized Spectraln- n P p Phase Coding (PQSPC). First obtain Op and Yp

as with SPC. Op Is then Input Into a uniform
The mean squared error expressions for SPC are quantizer with output levels K %/N * w/2N for
obtained by assuming Op and Yp are independent K - 0,1,...,2N-l. This operation Is called Pre-
and Op is uniformly distributed (0, 27). Thus quantizing. The quentlzer output 0' Is then
the effective mean squared errors are used to form the sequence oup0 )nd S the rest

E(e2) - . I of the procedure Is Identical to SPC.Pi (1 + Efcos 2nNY ) (16) The techniques acquired In Section II are
N n-I n applied to determine the effective error den-

and sities of PQSPC.

E(d) E- (I - E{cos 2nNY (17) f (x)  , - <_ (22)
NY n-i n and

We have investigated the sequence {jp) in f() - f(K) + f(K* IT < x < 0
terms of the effective quantization of Op and Yp. d N N - (23)
Effective quantizatlon error densities and mean " froix) f Cx - I) 0 <x
squared error expressions have been found. These % N -
results will be used In the following section to The tradeoff accomplished by Prequantizing can
improve the SPC performance. be seen by comparing the above densities to

those evaluated In Figure I. The NSE and range
IMi. PREQUANTIZED SPECTPAL PHASE CODING of dp are both reduced by a factor of two at

the expense of ep.
We have stated at the outset that SPC is a The normalized MSE performance of PQSPC Is

suboptimum technique for encoding discrete-time presented in Table I for a number of computer
signals. The results from (1] Indicate that for simulations. The optimum unit variance
a fixed bit rate the number of magnitude quantliz- Gaussian quantizer (O.G.Q.), the optimum uni-
ation levels NI, and the number of phase levels form unit variance Gaussian quantizer (U.G.Q.),
N2 , must be related by and SPC performances are also presented In Table

1 for comparison. All the quantizers have 32
N2 a 2.556 NI  (18) levels and the block size for SPC and PQSPC Is

for optimum performence. In SPC, Yp ranges from 64. N(A) Is the Gaussian density and X(A) is
0 to nr/2 and S ranges from 0 to 27. Thus Yp has the double-sided exponential density. The Input
only one-fourtA the effective quantization levels densities are both zero mean with variance A.
of Op at the receiver. This suggests that an en- In terms of normalized MSE, PQSPC offers an
coding tradeoff which decreases the NSE on Yp at Improvement over SPC of 20.41 for the Gaussian
the expense of Increasing the MSE on ep could im- Input densities, and 47.5% for the exponential
prove the SPC performance. The previous results densities. A desirable characteristic of SPC
offer a method of obtaining the desired tradeoff, is its relative Insensitivity to a change In

The effective errors ep and dp have been signal power or statistics. Table 1 demonstrates
shown to be functions of both np and mp and thus that PQSPC shares this characteristic. In the
they are functions of both Op and Yp. Suppose unit variance Gaussian case where the optimum

quantlzation scheme is given, the MSE of PQSPC
0; has a density function that minimizes the MSE Is Just double that of the optimum MSE. Further,
on Yp at the receiver. By shaping the density for a significant change In the Input signal
of Op to be that of 0; before forming the se- power of statistics. PQSPC often out performs
quenca (* p we can lower the MSE on fp at the thag same quentizer.

4mmli i l l ' i i l l ~ ~ -- -



Table 1. A comparison of normalized MSE between 2w < (A3)
the optimum unit variance Gaussian - p p-7
quantlzer (O.G.Q.), the optimum uni- The quantization of *p Is now described.
form unit variance Gaussian quantizer 27 w < < w
(U.G.Q.), SPC, and Prequantized SPC !p - K- * - <n p pN

(PQSPC). 2w 2w 2wK r - np+mp<

Density O.G.Q. U.G.Q SPC PQSPC T N T "

N(O) 2.48 E-3 3.82 E-3 7.39 E-3 5.88 E-3 - K Lw + 2 < 2 (A)
N(2) 6.76 E-3 1.23 E-2 7.39 E-3 5.88 E-3 N -- i 1 np4mp T
N(O) 3.63 E-3 5.43 E-2 7.39 E-3 5.88 E-3 Recalling K 2w/N - p+ p, we write Eq. (4) as
X(I) 1.81 E-2 2.65 E-2 2.78 E-2 1.46 E-2
X(2) 5.00 E-2 6.77 E-2 2.78 E-2 1.1.6 E-2 ;P + Ar < n - m
X(4) 1.13 E-i 1.10 E-I 2.78 E-2 1.46 E-2 p2w 2w W

- n+m <--

+ 2w wt (nP" .12w A
IV. DISCUSSION p pT, liT p

Similarly,

We began with an Investigation of quantize- j a -p n -, <
tion In SPC. We have found error densities and p+N p N - p p - N
MSE equations that completely characterize the . - -- 2w 2w n _W
quantization. The results of this Investigation p p " T' N np- pp N
indicate that additional quantization can lead - - - 2 + " n -m < (A6)

to Improved MSE performance. This Is an inter- P + , N - p p -

estIng concept as it does not follow simply from Using Egs. (5) and (6) we write ep in terms of
intuition. Using the concept of additional (p and *p+,t
quantization, a technique called Proquentized - p - p - - . I ( . 'A'
Spectral Phase Coding Is Introduced. It Is shown ep p p 2 • (Ap7)

that PQSPC has the same properties es SPC with We examine three examples here for clarity and
substanti'ally reduced NSE. Finally, computer then state the general results.
examples indicate that PQSPC Is often superior Case 1:
to fixed quantization for nonstationary or large
dynamic range signals. n p < I . n

ACKNOWLEDGEMENT Thus. p 0 p *+ Y *p+M 9 p " p

The authors gratefully acknowledge the sup- and1

port of the Air Force Office of Scientific Re- ep . S - - (e ) (Op - 'p)I
search under grant AFOSR 78-3605. p p p

-s -np

APPENDIX Case 2:

DERIVATION OF EQUIVALENT QUANTIZATION ERROR 4T< 0npmp < - N np-m <
EXPRESSIONS -'!p p- N -N p p-

Thus, p" p + 7p 2" T ;p+N "p" p

All quantizatlon Is to N levels uniformly Tnd p p Ts

spaced from 0 to 2w with output levels K 2wr/N a d ( 27t
for K-O,1,... ,N-l. Using Eqs. (2) and (7) we ep - ep - i [(ep + 4) + -

write 'p In terms of the direct quantization . P +

levels ap and Yp. 9 p N 9 '. np +N

p . p + np + jp + mp Case 3:

'Sp+M " p + n
p -Y p -mp (Al) N -pp T p p-_ p P<

- Thus, ~~J - 21T 4 * -
Since p nd ip represent quantized values, Thus. p p p p p +N . p - p

27f and
Sip - k . k an Integer. and ep ( + , +2w

Thus, an equivalent way of expressing ap before P 2 
p  

w

quantization Is .*p *p ! p n '
-P k + mp (A2)A)p There are five possible pairings of *p and

Note that In < w/N, ImI 1. w/N and thus ;p + since



in + mpJ > " - mIl <

and I n - m I > ! s. In + ml I

show that four of the nine available pairings
are not allowed. The complete results for a
are given in Eq. (AS). The results for dp given
in Eq. (9) are obtained in a similar manner.

e* C npmp <and
p N - p -N

N- Pp p-

+ 27r<rn m<N N <- p p- N
• ,n + , " npmp <- or

- < np-mp <-N

n <T + p M p < ,? -
- nN P_ r or

W ~21
np-Mp < V-
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1. INTRODUCtION

J. Max I I]i s generally credited with being the first to consider
the problem of designing a quantizer to minimize a distortion
measure given that the input statistics are known. Max denives
necessary conditions for minimizing the mean square quantiza-
tion error. These results are summarized in the following equa-
tions:

2 XJ (2)

where Ax) is the probability density of the variable to be
quantized and P(xj_ <x-Cx,) is the probability that x lies in the
interval (x, 1 x1. The y, are output levels and the x. are the
break points where an input value between x, -, and x, is
quantized to y, Fleisher [21 later gave a sufficient condition for
Max's equations to be the optimal set.

Typically. the above equations are intractable except for sim-
ple input densities, causing some researchers to derive approxi-
mate formulae for some common densities. Roe (31 derives an
approximation for the input interval endpoints assuming that the
widths of these intervals are small, i.e., the number of output
levels is large. Wood 141 derives a result which states, in effect,
that the variance of the output of a minimum mean-square error
quantizer should be less than the input variance. He also states
that the significance of his result is that the signal and noise are
dependent and that no pseudo-independence of the sort consid-
ered by Widrow [41 is possible.

However, Wood's derivation assumes the input density to be
five times differentiable and that the quantizer input intervals be
very small in order to truncate various Taylor series expansions.
Furthermore, the derived expression for the output variance is
dependent upon the input interval lengths and the input proba-
bility density function evaluated at the midpoints of these inter-
vals.

In this note we derive a generalization of Wood's results that
eliminates a number of his approximations and generalizes the
results to apply to more than just Max quantizers.

Manuscnpt received May 5, IM7; revised September 5. 1975. Thlies work
was supported in part by the National Science Foundation under Grant
ENO-7662426 and in panrthe1 Air Force Office of Scientific Research Air
Force Systems Command, USAF under Grant AFOSR-78-3605.

The authors are with the School of Enhanern& Purdue University. West
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II. DzvELurmwar Property 2 may also be easily derived by averaging the cond-

In the sequel it is assumed all random variables have f e tional mean square error over all the quantization intervals
second moments. where we condition on the event of being in one particular

Property 1: The mean value of the output of a minimum quantization interval.

mean-square error quantizer is equal to the mean value of the 111. DiscussioN
input. Some interesting observations can be made when these results

Proof: Consider (3): are compared with the recent papers of Wise et al. [6] and Sripad
fs. and Snyder [71. In [6) it is shown that the ras bandwidth of any~,xf(x) dx. (3) (stationary) Gaussian process must always increase on passing

through a memoryless nonlinearity. By using the result of Wise

Sum both sides of the equation from j - I to j - N. The result et al., we can say that a Max quantizer operating on a stationary
follows. Property I allows us to assume the input density has Gaussian input increases the rms bandwidth while simulta-
zero mean without loss of generality. neously reducing the variance.

Property 2: The variance of the output of a minimum mean- In [7), Snpad and Snyder develop necessary and sufficient
square error quantizer is always less than or equal to the input conditions for the quantization error to have a uniform distribu-variance. Furthermore the mean-square quantization error is tion. In addition, they derive sufficient conditions for the signal
gvnce. Frtheiffrmnor the mea r uand quantization error to be uncorrelated given that the error is
given by the difference of the two. uniformly distributed. Consider the case where the random

Proof: Let us consider the mean-square error e between the variable to be quantized is uniformly distributed. The Max
quantizer's input and output: quantizer for this case is the equal step size quantizer. It is found

N that the uniform input density satisfies the conditions for the
e- I f (y - x)f(.x) d (4) quantization error to be uniform but fails the conditions for

-I -,, uncorrelatedness. The results contained herein confirm this re-
suit and in fact tell us the signal and noise are strictly negativelywhere xo and xN are the smallest and largest values taken on by correlated.the input density and may take on the values - ao and + oo,respectively. Expanding the integrand and using the expression ACmNOWLeDGmE

N Xj ()tdx (2)- We express our thanks to Ed Delp for posing the problem.
I f ' x - EREF-RENCS

and (3). we find that III J. Max. "Quangizng for munimum distortion," IRE Trans. Inform
N TeXory, vol. IT-6, pp. 7-12, Mar. 1960.

O(2x P. E. Flescher, "Sufficient conditions for achieving minimum distortione- a P(, - I <P Xr. 5) (2)'' in, v. quantia," IEEE Iral. Comr. Rec., P. %. pp. 104-111. 1964.

i-I 131 G. M. Roe, "Quantizing for minimum distortion," IEEE Trans. Inform.
where E } is the statistical expectation operator. But we notice Theovy, vol. IT-10. pp. 384-385, Oct. 1964.

S141 B. Widrow, "A study of rough amplitude quantization by means of
that the last term on the right is the variance of the output, 02, Nyquist sampling theory. IRE Tram. Circi's 7heor. vol. CT-3, pp.
Since e > 0, this implies 226-276, Dec. 1956.

15) R. C. Wood. "On optimum quantizauon," IEEE Trans. Inform. ThioQoy,
(6) vol. IT-5. pp. 248-252. Mar. 1969.

(6) G. L. Wise. A. P. Traganius, and J. B. Thomaa. "The effect of a
Property 3: The signal and quantization noise are always memoryless nonlinearity on the spectrum of a random proces." IEEEnonpositively correlated at the output of the minimum mean- Trams. Inform. Theory. vol. IT-23. pp. 94-89. Jan. 1977.

square error quantizer. [71 A. B. Snpad and D. L. Snyder, "A necessary and sufficient condition for
quanttzation errors to be uniform and white." IEEE Trans. Acousl.

Proof: Consider an additive noise model for the quantizing Speech. Signal Processing, vol. ASSP-25, pp. 442-448. Oct. 1977.
error; by Property 2,

E ((x +n)}- E ( x2) +2E(xn) + E(n) <E{x 2 ). (7)

This implies that E ( xn) < 0. Therefore, since x has mean zero,
the correlation coefficient must be nonpositive. Correction to 1976-1977 Ust of Reviewers

Remark: The above proofs depend only upon the output It has been brought to our attention that the name of C. E.
levels being chosen as the conditional means of the input inter- Sundberg was inadvertently omutted from the 1976-1977 list of
vals. Therefore, the same theorem applies to the maximum reviewers which appeared on pages 654-655 of the November
entropy and equal interval quantizers when the output levels y, 1977 issue of this TRANSACTIONS. We sincerely apologize for this
are chosen as above. As indicated by an anonymous reviewer, oversight.
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ABSTRACT

This paper treats some properties of the optimal mean square error uni-
form quantizer. It is shown for the OUQ that the mean square error (mse)
is given by the input variance minus the output variance. It is shown that

Lim mse > 1 with equality when the support of the random variable is con-
N- A2 /12 -

tained in a finite interval. A class of probability densities which have
the above Limit greater than 1 is given. It is shown that

lim N2 mse = (b-a) 2/12 where (b-a) is the measure of the smattest interval
Nw
that contains the support of the input random variable.

In many problems arising in the evaluation or design of a control or

communication system, it becomes necessary to predict the performance of a
uniform quantizer. Uniform quantizers are of interest because they are
usually the simplest quantizer structure to implement. The study of uni-
form quantization is also of interest because many noise processes in phy-

-' sical systems may be considered to be the noise produced by a uniform quan-
tizing operation. For example the final position of a stepping motor or
the Line drawn by the pen of a computer plotting device under a continuous
control may be considered to be corrupted by a uniform quantizing opera-
tion.

Because of tht importance of these quantizers several authors have con-
sidered various properties of them. Widrow Ell shows that under certain
conditions on the characteristic function of the input random variable, the
quantization noise is uniformly distributed. Gish and Pierce (23 show that
asymptotically the uniform quantizer is optimum in the sense of minimizing
the output entropy subject to a fixed mean square error value. Sripad and
Snyder C3) later extend Widrow's work to give a sufficient condition for

when the quantization error is uniform and uncorrelated with the input ran-
dom variable.

We will now state and prove some additional properties of these quantiz-
ers when we design them to minimize the Mean square error. We may write
down the analytic expression for the quantizer characteristic g(x) as,

a x<q

g(x) = a+(i+l)A q+iA<x<q+(i+l)a i=O,...,N-3 (1)

a+(N-l)A x>(N-2)&+q

where N is the number of output levels in the quantizer. We see that if x
is less than q or greater than q + (N-2)a, then x is truncated to a and a +
(N-1)A respectively. An important parameter of interest is the width of
the nontruncation region which equals (N-2)a.

The quantizer characteristic g(x) must be optimized with respect to

three parameters, q which fixes its position along the x axis, a which

Pr4ecnterf. at the Seventeenth Annu Alf eAton Conerence on Coimu14cwaton6
Control and Computing, Octobe' 10-12, 1979.



fixes its position along the y axis, and a wt;ich spec'.fies the step size of
the quantizer. Because it makes Little sense to speak of minimizing the
mean square error of a random variable with infinite variance, we will al-

M

ways assume 5 x2 f(x) dx < =.

Property 1

The optimum uniform quantizer preserves the mean of the input random

variable.

Proof:

Suppose g(x) is the optimum uniform quantizer. Then we must have

a SC( - g(x) + ) 2 f(x) dx = 0. (2)

This implies,

x f(x) = 5 g(x) f(x). (3)

Property 2

For the optimum uniform quantizer we have that

a = q - 6/2.

Proof:

Suppose g(x) is the optimum uniform quantizer. Then we must have

a 5 (g(x - ) - x)2 f(x) dx = = 0. (4)

S g(x-) 2 f(x) dx - 5 2xg(x-c) f(x) d I =)

(+(- +)&)2 q+c+(i+l)L f(x) dx + a2 -q+ f(x) dx

= (a'-1)A)O (a 5~)) q€i -
a aN- +(N_2) f(x) dx

- i (a+(i+1)x) f(x) dx + a q+c xf(x) dx

+ (a+(N-1)a) 2 m++(N2) xf(x) dx I . (6)

= 0

= (a+(i+1).%)2 Ef(q+c+(i+l)&) - f(q+C+iA)]

+ a2 f(q+c) - (a+(N-1)&) 2 f(q+c+(N-2)a)



- 2r a(i1a E(q+c+(i+1)a) f(q+c+(i+l)&)

- (q+c4.i&) f(q4'c+ia)] +. a(q+c) f(q+c)

- Ca+(N-1)a) (q+c'(N-2)a) f(q+c+(N-2)&) IC= 0. (7)

Simplifying this expression we obtain

N-2
(&+2a-2q) F, f (q+i a) = 0.

1=0
N-2

The soLution E f(q+ia) =0 is of no interest because without affecting
1=0

the mean square error, we may always arbitrarily set f(q+ia) = 0,1
0,.. .,N-2. Hence ae2a-2q =0 which is what we wish to prove.

C3

Property 3

The mean square error of an optimum uniform quantizer is given by the
input variance minus the output variance.

Proof:

We again write the mean square error mse as

mse = E(x I - 2 E~xg(x)l +* E(g(x)2) (8)

We wish to optimize this equation with respect to A. Using a =q-6/2 we
first obtain

N-3 .1 2 q(~
E(xg(x)}- IE (q.(i i42)A) 5qi xf(x) dx

+ (q&/2 S- xf(x) dx +(q+(N)A) 5 q4(N-2)A&fx d 9

and

2 N-3 1 2S+(i+l)a dE~~x (q+(i4 2  qi 1 (x) d
E~g~x ~ =i=0 Oi

+ (qa )2 Sq, f(x) dx + (q+(N43)6) 2 Sq(N) f(x) dx. (10)

low substitute Eq. (9) and Eq. (10) into Eq. (8); take the partial deriva-
tive with respect to A and set the resuLt equal to zero. We find that

E~xg(x)) 4+ qE~g(x)), E~g(x) 2~ )+ qE~x). (1

But E~g(x)> = E~xI for the optimum quantizer. Hence E(xg(x)} = E~g(x)
and we have for the mean square error mse

mse = E~x 2 - (g(x) 2 (12)



which together with Property 1 finishes the proof.

Sripad and Snyder C33 show sufficient conditions for (x-g(x)) to be uni-
form and uncorreLated with x to be

=-- -w = 0 n = ±1, ±2p... (13)
x A x A

where #(w) is the characteristic function of the input random variable x.

Frequently in the analysis of a system corrupted by a uniform quantizing
operation the assumption is made that the quantization noise is uncorreLat-
ed (sometimes independence is assumed) with the input. The next property
demonstrates that this can't be done with the optimum uniform quantizer.

Property 4

Suppose the input probability density is Riemann integrabte. Then the
quantization noise can't be uncorreLated with the input for the optimum un-
iform quantizer.

Proof:
Without loss of generality assume E(X) 0. Now suppose the converse to

the property. This implies

EC(x-g(x))x) = E~x2) - E~g(x)x) = 0 (14)

But from Property 3

E~xg(x)} = E(g(x) 2} henceE~x 2 } (15)

2 2 (5
E~x I ECg(x) I = 0

But again from Property 3, the left hand side of Eq. (15) is the mean
square error which implies a contradiction. That a probability density
function is Riemann integrable necessarily implies that the mean square er-
ror for any finite number of output Levels is greater than zero (i.e. f(x)
has no delta functions).

We now state an obvious property which will be used in several subse-
quent proofs. The proof of property 5 follows from a simple application of
the Lebesgue dominated convergence theorem.

Property 5

The mean square error approaches zero for the optimal uniform quantizer
as the number of output levels approaches -.

Let I = [a,b) be the smallest interval such that f b f(x) dx = 1. Note
a

that lal or Jbj may be infinite.

Property 6

Suppose f(x) is Riemann integrable. Then for the optimum uniform quan-



O tizer,, im (N-2)A = b-a.
N-

Proof:

Suppose Lim (N-2)A < b-a. This implies for N sufficiently Large that we

are always truncating some finite amount of probability mass which means
the mean square error can't go to zero which is a contradiction of the pre-
vious property. Hence we have the Lim (N-2)A > b-a.

N..
Let us suppose tim (N-2)A > b-a. Note that this makes sense only if the

random variable is of finite support. Now for N Large enough there is no
truncation error. It is easy to show as will be done in the next property

mse
that for a quantizer with no truncation error, Lim = = I for a Riemann

N.- a /12
integrabLe density function. So for N sufficiently Large (N-2)a > C > b-a
< -. Then

1 Lim mse tim mse orN..A- 1 N.. C2/12(N-2) 2

C2

Lim (N-2) mse > (16)

N*.

Consider now a suboptimal quantizer whose input intervals are given by di-
viding up the interval I into N-2 equal subintervals. Denote the mean
square error or this quantizer as mseSUB, and its step size AS  = (b-

a)/(N-2). This quantizer has no truncation error and hence

mSe sue mSe sue
I = Lim- = Lim or

N- AS/i 2  N- (b-a) /12(N-2)2

Lim (N-2) 2 mseSu (b- < t Lim (N-2)2 rse (17)NU- N..

which is a contradiction since we have found a suboptimal quantizer with a
better mean square error than the optimal.

C)

Property 7

Suppose the density function is Rlemann integrabLe and (b-a) < . Then
for the optimal uniform quantizer we have

Lim mse = 1.

N..w A /12

Proof:

From property 6 we know that Lim (N-2) A0  b-a < - where A0 is the op-
N..

timum A. We may design a suboptimum quantizer by dividing the interval I



(smallest intervaL such that Sb f(x) dx = 1) into N-2 equal subintervals

and use these subintervals as the breakpoints for our quantizer. We will
denote the mean square error associated with this quantizer as mseSUB  and

the step size AS (b-a)/(N-2).

Define

M A Supf (x)
Xc (q+iA) q+(i+l)&)

and

= -f(x)

Xc(q+iA) q+(i+l)A)

Then since there is no truncation error for the suboptimal quantizer we
have

N-3 q+(i+1)A S1 2
-. mt 5 S (X-(q+(i)As)) dx -< mSe

=O q+iA

and

N-3 q(i1A1
< F Sq+(i+l)As (X-(q+(i1 )As)) 2 dx (18)

mSeSUB - N, M i q+iA ( 2

=O

or

a2S N3 4A N-3
ra <_re <I M A (19)

i=O -S Su- i

N-3 mse SUB N-3
Lim NE m ias < Lim2 < Lim E MiA (20)
N.- i=0 N.0 AS /12 N-o- i=0

Now since f(x) is a density function and is Riemann integrabLe

N-3 N-3
Lim F miA S = Lim 1 MiA S = 1
N.- i=0 N.- i=0'

impLies

Lim mS-SUB = 1. (21)
N- 1 /12

AS(N-21A S  Lim(N-2),&S

Now lim = Li S N- = 1, whi:h gives automaticallyA.. m'N. (N-2A = im(N-2)AO

0 -m 0 N- 0

Lim = 1. Now for any quantizer whose nontruncation region covers the
N - A0



support of the Riemann integrable density function in the Limit as N ap-
useproaches infinity, we may show as above that tim = > 1. This bound is

N- A /12
arrived at by ignoring the truncation error and is true for finite or in-
finite support density functions. We now have the foLLowing string,

mSeUB mse 5u A2/I2

Lim = Lim -
N-. A0 /12N- A As/I A0/12

mse A /12

(Lim =1 (22)
N..- As/12 N..- a0 /12

but

i m~esUB m 5OPTIMAL

I = tim -i-SUB> Lim-.-OTIMAL >- (23)
N-- A0 /12 N.- A2/12

Or Lim mSeoPTXRL= 1
N.. 0 /12

which is what we wanted to prove.

Zador C43 shows that if f(x) is Riemann integrabLe and E(x2 + 6 < -for
same 6 > 0; then we have for the optimal nonuniform quantizer

tim N2 rse = I1f11113/12
N..

where 11f11l/3 is the L13 norm. This resuLt shows that for the nonuniform

quantizer, the mean square error decreases on the order of 1/N2 for Large
N. Is there a simiLar property for the optimum uniform quantizer? We now
give our next property.

Property 8

Suppose f(x) is Riemann integrable. Then for the optimum uniform quan-

tizer Ltim N
2 mse = -i .

N.. 12
Proof:

Suppose (b-a) * .. Then I < Ltim mse im (N-2)2mseN~~~w~ z/ 2

N..1 a /12 N..- (N-2) a /12

Ltim (N-2) 2mse (24)

Lim N 2A2 /12

2 2 2
but (N-2)2 A2 . . which implies Ltim (N-2) mse * .

N..m
mse 2 or2mC-)If b-a < - then Ltim s a 1 or Lm(N-2)mse L tm N2mse

NW-A /12 N.. N..



Lim(N-2) 2A2  (baa)2which finishes the proof.

Discussion

We should note that not everyone employs the same definition of optimum
uniform quantizer that we have used. For example PearLman and Senge [53
have published tables of the optimal uniform Rayleigh quantizer. For their
computations, they add the constraints a = 0 and that q = a/2.

It is interesting to note that properties 1 and 3 are also shared by the
optimal nonuniform quantizer as shown in [63. As a further consequence of
these two properties we find that for the N=2 case, the optimum uniform
quantizer and the optimum nonuniform quantizer are identical.

Property 7 is one of the more interesting properties proved in this pa-
per. A common approximation to the mean square error of a uniform quantiz-

er has been a 2/12. Consider the class of density functions given by

f(x) < x < -.
(1 + tXI) 3 +6

We easily see that 8 = Sup (E: f x2 +c f(x) dx < 4. By straightforward
minimization techniques one can show for this class of densities that

Lim mse. + 2

N..n a2 /12 6

Property 8 is of interest because it sets forth a basic difference
between uniform and nonuniform quantizers. For the nonuniform quantizer we

can expect the mean square error to be of the order 1/N2. We can expect
this rate of convergence to zero for the uniform quantizer only if the pro-
bability density is of finite support. We may show for the optimal uniform

2
Gaussian quantizer that the error is the same or larger than tn N/N
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ABSTRACT

This paper is concerned with the determination of regression functions
from only a partial characterization of the joint distribution. It is
shown that statistical information consisting of various moments and joint
moments is sufficient to characterize a regression function. An applica-
tion to regression functionals is also considered.

I. INTRODUCTION

Let X and Y be random variables with Y integrable, i.e. E{YI} <,
and consider the regression function of Y on X,

m(x) - E{Y]X-x}.

As is well known, m(.) is a Borel measurable function, and it frequently
arises in engineering applications. For example, if Y is a second order

random variable, then the minimum mean squared error estimate of Y in

terms of X is given by m(X) [1, pp. 77-781.
In some cases m(.) has a particularly simple form. For example, if

X and Y are jointly Gaussian with respective means mx and my, respective

2 
2

variances aX  > 0 and G , and correlation coefficient p, then

m(x) - ax + b, (1)

where a - (Oy/ax)p and b = my - amX . However, in the case of jointly

Gaussian random variables, mX, y, Ox, Oy, and p completely determine the

bivariate distribution of the two random variables.
In more general cases, the question arises as to how much information

about the bivariate distribution is required to determine the regression
function. If X and Y are two second order random variables that are
separable in the sense of Nuttall 12], then the regression function m(.)
has the form given by (1). However, knowing that two second order random
variables are separable in the sense of Nuttall, and knowing the means,
variances, and the correlation coefficient is not sufficient to determine

the bivariate distribution of the two random variables. Notice that any

two random variables whose bivariate characteristic function is ellipti-

cally symmetric are separable in the sense of Nuttall 13].
As we have seen, there exists a class of joint distributions such that

the regression function can be determined knowing that the two random

variables belong to that class and also knowing means, variances, and the

correlation coefficient. However, it might seem reasonable to conjecture

that in more general cases, the regular conditional distribution [4] of Y

Presented at the Seventeenth Annual AlZerton Conference on Conwunication,
Control, and Computing, October 10-16, 2979; to be published in the
Proceedings of the Conference.
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given X=x is required. Although the regular conditional distribution of
Y given X-x is sufficient to determine m(x), in the next section we will
see that it is never necessary.

In this paper we will be concerned with statistical information such
- that there can be only one regression function consistent with the given

statistical information. In the next section we consider the regression
of Y on a random variable and then on a random vector. Then in the
following section we consider the regression functional, that is, the
regression of Y on a random process.

II. DEVELOPMENT

Let Y be a second order random variable, let X be a random variable
with compact support, and let m(.) be given by Eq. (1). Define the measure
u on the Borel sets of IR by

(A) - P(XCA) ,

and let 1Ii11 denote the L2( (u) norm. We will say that a polynomial has

max degree N if the degree of the polynomial is no greater than N. We
note that for any c > 0, if N is sufficiently large, there exists a poly-
nomial of max degree N PN (x) such that

M m- PN" < c' (2

That is, there exists a continuous function h(.) such that [5]

I m - hl < C/2

and by the Weierstrass Theorem there exists a polynomial PN of max degree
N with N sufficiently large such that

II h - PNI < c/2

Thus Eq. (2) follows by the triangle inequality. Hence there exists a
sequence of polynomials PN (x) such that

PN(x) - MW(x) in L2(W)

Let QN(x) be the polynomial of max degree N that is closer to m(x) (in

L2(p)) than any other polynomial of max degree N. We note in passing that

QN(x) is uniquely defined a.e. [p] by the Projection Theorem. That is,

there may exist more than one representation of QN(x) (i.e. with different

coefficients) but they are all equal a.e. [I]. From the preceding
observations, we have that

QN(x) MW(x) in L2 [I ] .

Express the polynomial QN(X) as

N
QNx) aj(N) x

J0O

It follows from the Projection Theorem that the a (N) can be determined
from the relation
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E rM(X) - a(N) X0, k 0, 1, 2,..., N

J.0

This is equivalent to

E{XkY) - Eaj(N) E{X +k1, k - 0, 1, 2,..., N (3)

J=0

Thus we have seen that from a knowledge of

E{X k } , k - 1, 2,

and

E{YXk } , k - 0, 1, 2,

we can construct a sequence of polynomials QN(x) that converge in L2(0) to
m(x).

Now let X be an arbitrary random variable. Let g be an invertible

Borel measurable function whose range is bounded. Define the random
variable X as X = g(X), and the measure v on the Borel sets of R by

3(A) P(XfA). From the above discussion, we see that

m(x) = EYIX x}

is determined a.e.fw] by the quantities

E{Xi , k - 1, 2, ... (4)

and

E{Yx k - 0, 1, 2, .... (5)

Let QN(x) denote the polynomial of max degree N constructed in the

preceding fashion. Then

QN(x) - m(x) in L20j)

Notice that m(x) = m[g(x)]. From a change of variables result [6, p. 182],
we have that

f QN(x )  -m(x) Iu(dx) f f QN[g(x)] -m(x)] 2  (dx)
g(lE)

Therefore, QN[g(x)] -P m(x) in L2(p).

Now we will remove the restriction that Y be second order. Assume

that Y is an integrable random variable and let

y if jYl < k
Gk(Y) -

G ky) 10 if jYj > k.

Then Gk(Y) is a second order random variable and [1, p. 23]

E(Gk(Y)IX-x) -o E{YjX.x} a.e.[u]

Since IGk ()-¥Y I J¥] and lY) is integrable, we have that E{Gk(Y)IX-x)

m(x) in L1 (p) by the dominated convergence theorem (6, pp. 124-125].
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'00 Thus from a knowledge of the quantities in Eqs. (4) and (5) we can
derive a sequence of estimates for EC k(Y)IXfx} which converges in L26j) ,

and consequently in L1(w) (see, for example, [7]). Also, E{G k(Y)lX-x}

converges to E{YIXmx} in L1 (p). Thus, by a straightforward diagonalization

procedure, we can derive a sequence of estimates which converges in LI(0)

to m(x). These results are summarized in the following theorem.

Theorem 1: Let Y be an integrable random variable, let X be an arbitrary
random variable, and let g be an invertible Borel measurable function
mapping the reals into a bounded set. Then the regression function m is
determined a.e.[p] by the quantities

E{[g(X)] k } , k = 1, 2,

and

EIY(g(X)] k  , k - 0, 1, 2,...

Consider for the moment the case where X and Y are independent. In
this case a solution to Eq. (3) is given by

a0 (N) - E{Y}

a (N) - 0 , j > 0

and we get that m(x) - EY}.
Now consider the following two different bivariate density functions:

f (x,y) = I-exp (Y-fX) [0, W
IV2n a 2 22  I01

f2 (x,y) - Xl [px-l,x+l](Y) I[0 ,11 (x),

where a > 0, pE (-1,1), and I denotes the indicator function. Assuming
that the density of (X,Y) is given by fl, we find that11

EXk 1E{Xk} = k+l

4 EY mk+2

In this case, for N > 1, a solution to Eq. (3) is given by

al(N) - p (6)

a (N) - 0 , j 1 , (7)

and we conclude that

M(x) - 0x• (8)

If we assume that the density of (X,Y) is given by f2 ' we find that

k+2

EIk +-'
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k 2

EYX k+3

In this case, for N > 1, Eqs. (6) and (7) still satisfy Eq. (3), and the
- regression function is once again given by Eq. (8). Thus, in this example,

the two pairs of marginal densities are not the same, the conditional
densities of Y given X-x are not the same, and the moment sequences are
not the same; however, the moment sequences are sufficient to characterize
the conditional expectations, which are identical. Numerous other similar
examples may easily be constructed.

Now we will consider the regression of Y upon a set of random n
variables. Let X be an arbitrary random vector taking values in Rn, and

let P be defined on the Borel sets of Rn by

u(B) = P(XEB)

Lemma 1: If U has compact support, then the class of all polynomials is

dense in L2(P).

Proof: Let q be an arbitrary element in L2 (p). For any c > 0, there

exists [5] a function h: In - R which is continuous and has compact
support such that

q-h II < f12

By the Stone-Weierstrass Theorem [8] there exists a polynomial p in n
variables such that

jI h-p I < e/2

and thus by the triangle inequality

p-q 11 <
QED

We recall that the degree of a monomial in n variables is the sum of
the powers of the variables, and the degree of a polynomial is the degree
of the monomial having the largest degree over all the monomials in the
polynomial with nonzero coefficients. There are

C(n,d) - (n+d - l)

monomials of degree d in n variables [9].
Assume that Y is a second order random variable, and define m(x) by

Eq. (1), where x is now an element of I n. Assume that V has compact
4 support. Let QN(X) be the polynomial of max degree N which is closer, in

the L 2(p) norm, to m(x) than any other polynomial of max degree N.

Consider a monomial in n variables of degree d. There will be
C(n,d) of them. Order them lexicographically by the powers of the
components of x, and let mjd(x) denote the J-th monomial of degree d.

Then QN(x) can be expressed as
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N C(n,d)

QN(X) E E ajd(N)mjd(x)

d-O J-1

It follows from the Projection Theorem that the coefficients ajd(N) are

given by the solution to the following set of equations:

N C(n,d)
E{Ym (X) = ajd(N) E{m jd(X) m ik(X)}, (9)

d-O J=l

k - 0, 1, ..., N and i = 1, ..., C(n,k). If the coefficients a d(N)

satisfy Eq. (9), then it follows from Lemma 1 that

QN(x) - m(x) in L2(1)

Now we remove the assumption that X has compact support and let X be

an arbitrary random vector taking values in n . Let g be an invertible

Borel measurable function mapping Rn into a bounded subset of Rn , and
let X = g(X). We see that

m~x) - E{YIX'x}

is determined a.e.[)], where U(A) [g (A)], by the quantities

E{mjd(X)}

and

E{Ymjd(X) )

for d = 0, 1, 2, ... and j = 1, ..., C(n,d). Let QN(x) be the polynomial

of max degree N determined in the preceding fashion. Then, similar to the

development of Theorem 1, we can employ a change of variables result
[6, p. 182] to conclude that

QN[g(x)] - m(x) in

A chopping argument as in the development of Theorem 1 allows us to remove
the second order restriction on Y. Then a straightforward diagonalization
procedure results in a sequence of estimates which converges to m(x) in
LI (W). This result is summarized in the following theorem.

Theorem 2: Let Y be an integrable random variable, let X be an arbitrary

random vector taking values in R n, and let g be an invertible Borel

measurable function mi7ping Rn into a bounded subset of Rn . Then the
regression function m is determined a.e.[u] by the quantities

E{mjd[g(X)] and E{Ymjd[g(X)]l

for d = 0, 1, 2, ... and j - 1, ... , C(n,d).
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III. REGRESSION FUNCTIONALS

As before, assume that Y is an integrable random variable, but now
let T be an infinite subset of ]R and let {X(t), tE T) be a random
process. Let S denote the space of all extended real valued functions
defined on T, and letM(S) denote the a-algebra on S generated by the
class of all cylinders in S. Let- denote the Borel sets of 1R. Then
the regression functional

mtx(t), t CE T] = E[YIX(t) - x(t), t C T1

is a measurable function from (S, X(S)) to (R ,,) (see, for example,
[10]).

Let u be the measure induced onR(S) by {X(t), t4ET}. That is, for
any cylinder C in S, u(C) = P({X(t), t ) EC), and p is extended toX(S)
via Kolmogorov's Theorem (see, for example, [11]).

It follows from [1, pp. 21, 604] that there exists a countable subset
of T, say T = {tl,t2 ,. ..1, depending on the random variable Y, such that

E{YIX(t) = x(t), te T1 = E{YIX(t) - x(t), tET} a.e.[] .

Let

M - E{YIX(t), t CT},

M - E{YJX(t1 ), ..., X(t)},

.T- a{x(t), t CT,

and

n~j a {X(tl'"' X(tn"

Then from the properties of iterated conditional expectations (1, p. 371,

it follows that

E{Mn+ - Mn w

and hence {M , .ns n > 1) is a martingale. It follows from (1, p. 332]

that Mn - M wpl. Since VI 'n < E{ IYI} < -, it follows from a martingale

convergence theorem [1, p. 319] due to Doob that E(IMn-M} - 0. This is
equivalent to

E{YIX(ti) = x(t), i-l,...,nI - E{YIX(t) - x(t), t f T)

in L (i). Notice that Theorem 2 is applicable to E(YIX(ti) = X(t

i-l, .... .. Thus a straightforward diagonalization procedure results in
a sequence of estimates which converges to m[x(t), t CT] in L1 (p). This

result is summarized in the following theorem.

Theorem 3: Let Y be an integrable random variable and let {X(t), tE T)
be a random process. Let (g n n-l,2,.... ) be a sequence of functions

where g. is an invertible Borel meahurable function from R n to a bounded

subset of R . Assume that for all positive integers n and for all sets
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of n points in T, say tl, ..., tn, the quantities

E{m jd(g nX(t1,.... X(t, n)

and

E{Ym jd(g n[X(t) ... X(t n)])}

for d - 0, 1, 2, ... and j = 1, ..., C(n,d) are known. Then up to p
equivalence, there is only one possible regression functional m[x(t), te TI
- E{YIX(t) - x(t), t f T}.
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Quantization Schemes for Bivariate
Gaussian Random Variables

( JAMES A. BUCKLEW ANt) NEAL C. GALLAGHER, JR., mEMBER, tIE

Abstouct-71se prehleus of qWWnMdh iW.dMWMWIMM Gaumam raOdO 11. DEVELOPMENT
variables is considered. Itish shown tim.t for all but a finite nuamber of
cima a Poarm "reouetia. gives a seame, meanit square quauisitloa Consider the mean square quantization error E of a
eflar than a Carsesian repreaeueaalea. Aplications of the results to a
transfor ciding schsese knona spectra phase coding am discumaid. Polar for'mat representation:

IV, N, c

1. INTRODUCTION EP. f' f 'Ir exp(j#) -b,exp(d,)I2
J-i -I C, .-

C ONSIDER a two-dimensional Gaussian random f,(r)drd
variable X with independent components. For many 271 (I

applications in signal processing and digital communICA- where N, and N, are the number of levels in the phas.e
tions it is necessary to represent this quantity by a finite and magnitude quantizers, respectively. The b, and d, are
set of values. One possible representation of X is in the output levels of the magnitude and phase quantizers
Cartesian coordinates, obtained by individually quaniz- corresponding to input levels lying in the intcrvals
ing the two rectangular components of X. An alternative (a,. 1,a,] and (c_I.Yj, respectively. The function 1,(r) is
representation, in polar coordinates, is obtained by quan- the input density of the magnitude which is Rayleigh
tizing the magnitude and phase angle of X. distributed and independent of the random phase 8 which

In I IlI experimental data are put forward to show that, is uniformly distributed over I - 1r,iwJ.
in all of the cases treated, polar formatting is better than After squaring out the integrand and integrating over 0
rectangular. The purpose of this paper is to give a more from r, to c,, we obtain

- rigorous treatment of the problem and to ascertain which
of the representations leads to a smaller mean square N, N,
quantization error. E. X f' [(c -,[r +b,2 2rb[sin( - d,)

In the first section we will derive the exact error expres- j-i -I a,

sion for the polar format. The second and third sections fir)dr
deal with computer simulations of the expression and - ifl(c d)]l 2wf (2)
compare the polar and rectangular formats. It is shown
that, in almost all cases, the polar format gives a smaller Setting aE,,/dd, -0 leads to the equations
quantization error.

If the polar format is to be used, the question arises as c - d, -- -d - c, (3a)
* ~to the best ratio of the number of phase qluantizer levels toN* -

*the number of magnitude quantizer levels. Pearlman 12] 21Y
used distortion rate theory to derive a bound for this -iN (3b)
expression. In the fourth section we derive an asymptotic
expression that agrees with the Pearlman result and per- forj- I.-* . , N,,. It should be noted that these are simply
form computer simulations showing the validity of this the equations for a uniform quantizer. Consequently. the
bound. expression for mean square error becomes

In the fifth section we apply the above results to a
transform coding scheme, spectral phase coding (SPC). 06
Theoretical arguments are given for the observed robust- E, f [r 2+b. 2-2rbsinc(l/N#)]I(r)dr. (4)
ness of SPC, and an exact error expression is derived. 6-

Computer simulations are then made demonstrating the where sinc(.)m-sin()/(. A differentiation with re-
robustness of SPC. spect to b, yields the optimum b, as

Manuscript received November 18, 1977; revised December I8, 1978. f rf (r)dr
T'his work was supported by the Air Force Offrice of Scieniic Research. a,

- Air System Command. USAF, under grant AFOSR-78.64i. b, -sinc( I/ N,) -'----- 5
The iuihors are with ihe School of Electrical lEngineerinig, P'urdue f d

University. West Lafayetie. IN 47907.

001 8-9448/79/900-0537$00.75 w) 1979 IEEE
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Substituting this value back into (4), we find rectangular format operation, N, must equal N, There-

r 2
-N, [f' ' rdr 2  fore, N -Ay-N(13)

E, sinc(l/NVt) (6 N- N 1 N(6)
f-' f(r) dr Let E(N,g) denote the mean square quantization error
"a, Iproduced by an optimal N. output level Gaussian quan-

where the upper bar indicates the statistical expectation tizer. The rectangular format error Er,. is given hy
operator. Let E(N,.P) denote the mean square quantiza. Erect=-2 E(N. g) -2 E(\V, g). (14)
tion error produced by an optimal. one-dimensional. N,
output level, Rayleigh quantizer. It is shown in 131 that The problem is now to compare (12) with (14).
E(N,,r) is given by the difference between the variance of
the quantizer input and the variance of the output. Hence 1ll. EXACT COMPUTER SIMULATION
E(N,.r) may be written as

N, In this section we make use of Max's f~I tabulated
E(N,. r) r -r' Y b2[fa1(r) dr] (7) results for E(N,.g). Max gives values of this function from

~-i a. 1 1N, - I to N, = 36. We duplicate Max's work for the
where the (a) are the quantizer input interval endpoints Rayleigh quantizer and obtain values for E(N,r). Using
and the (b,') are the quantizer output levels. Max 141 an exhaustive search, we compute the smallest values of
shows that the (b) and (a,) satisfy error obtainable for (12) and (14) for values of N from I

b,+ to 2000. For all of these cases, there are only 31 values of
a,, 110 (8a) N for which the rectangular format is better. These values

f dr(r) dr

b,-A.. (8b) TABLE I
f " f(r)dr VALUES OF N WHERE REcTANGuLAR FORMAT IS SUFIOR TO

I POLAR FORMAT

These equations may be written as Bae uo exc exressIions Based ua'"n approximuate expresso~s

f rj( ) d f a; rf(r) dr 1 3. 4.

= + a r ~ d r (9 )6
2 f r) dr 2f frd

a, 2a2
Minimizing (4) with respect to the a, yields 33 :'5i

a1 2sinc(l/N*), ) 20 1

and substituting (5) into the above gives 21 21
a25 24, 25

f.rf(r) fJrf(r)dr 26 26. 27, 28, 21, 30. 31. 32

aa, -, 44 + .3, 35

2fJf(r) dr 2f 1 'f(r)dr 1)36 36

a. , * a, 37 3?

which is identical to (9). Fleisher 15] shows that Max's 38 38

conditions (i.e., (8a) and (8b)) are necessary and sufficient 41 43, 44., 4R
for the optimality of the Rayleigh quantizer. Thus we are 49 4

assured that the solutions to (11) are unique, leading us to 50os
the conclusion that 51 Sl

56 56
a, -a,. 57 57

The polar format error expression then becomes 58 58
51 53

If we assume bit rate limited signal transmission, then 44 64, 65, 66. 67

we must constrain the product of N, and N# to be less 723 72
than or equal to some constant, let us say N. To compare 71, 74, El, 82. 93, ah, 1
ilic rectangular and polar formats, it i% assumed that the 1
product of N, and N, the number of output levels of the
rectangular format quantizers. must also equal N. By use Ill I, 1, 1

of symmetry arguments it may be shown that, for optimal __________________
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TABLE II
ATABu LATIONOF THE R.LAIviE E.1t LiuvN(¥ q -(E- E,.)/E OF POLAR QUANTIZATION OVER THAT 0'

RECTANGULAR QUANTIZAIIUN. I IIE BI:SI NUMER OF MAUNIfLE LEVELS N, AND THE

BEST NvUMEa OF Ri-c TAN(XIAR oRMAl I.EVLis N., AS A FUNc(TION OF N

NI . N N ,, ,' N

I 
Pi r Nt

1 .000 1 1 51 3.801 4, 7 101 .578 5 10
2 -. 001 1 1 *2 -3.5'4 4 7 102 -4.424 6 10
3 -28.572 1 1 5

,  
-3.544 4 7 103 -4.424 6 10

4 -.005 1 2 54 -. 990 4 6 104 -4.424 6 10

5 -16.226 1 1 55 -3.459 5 6 105 -4.424 6 10
6 2.468 1 2 56 1.613 4 7 106 -4.424 6 10

/ -4.084 1 e 5t 1.613 4 7 107 -4.424 6 10
8 3.325 2 2 58 1.613 4 7 108 -6.469 6 9

9 22.679 1 3 510 1.613 4 7 109 -6.469 6 9
10 -. ?03 ? 3 60 -5.116 5 7 110 -1.554 6 10

11 -.?03 2 3 61 -5. 16 5 7 111 -1.554 6 10

12' .620 2 S 62 -5.316 5 7 112 -1.554 6 10

13 .620 2 3 63 3.655 5 7 113 -1.554 6 10
14 -15.048 2 3 64 4.369 4 8 114 -6.812 6 10

15 -1.004 2 3 (5 -154.4 5 8 115 -6.812 6 10

'6 1.936 2 4 66 -1.544 5 8 116 -6.812 6 10
1? 1.936 2 , 61 -1.54. 8 11? -6.204 6 9
18 -6.640 2 4 68 -1.544 5 8 118 -6.204 6 9
19 -6.640 2 4 69 -1 .S44 8 119 -8.422 7 9
20 .377 2 4 13 -6.558 5 7 120 -4.120 6 10
"1 1.220 3 . 11 -6.538 5 7 121 -1.919 6 11
,.2 -. 660 ? 72 .689 5 8 122 -1.919 6 11
23 -. 660 2 4 15 .689 5 a 123 -1.919 6 11
24 -2.631 3 . /4 .689 5 8 124 -1.919 6 11
25 6.493 1 ' 15 -6.442 5 8 325 -1.919 6 11

26 6.495 5 1 t, -6.04? 5 8 126 -6.151 6 11
e7 -S.911 1 / -6.442 5 8 12? -6.151 6 11
,.8 -. 911 3 ,-6.44e 8 128 -6.151 6 11

29 -5.911 3 79 -6.442 5 8 129 -6.151 6 11

s0 -1.0?2 665; -4.180 5 8 130 -2.146 6 10
51 -1.01? 3 s 11 -. 912 5 9 131 -2.146 6 10
.2 -1.022 3 82 .972 9 132 -1.865 6 11

33 -9.843 3 5 83 -.972 5 9 133 -4.015 7 11

34 -9.643 3 5 84 -2.23, 6 9 134 -4.015 ? 11

35 1.471 3 5 65 -6.499 5 9 135 -4.015 7 11

36 1.388 3 6 86 -6.499 5 9 136 -4.015 7 11

37 1.388 3 6 81 -6.499 5 9 137 -4.015 7 11

58 1.388 S 6 88 -2.789 5 8 138 -5.298 6 11

3Y -4.288 3 6 89 -2.789 5 8 139 -5.298 6 11
40 -3.440 . 5 90 -1.765 5 9 140 -8.395 7 10
41 -3.440 4 5 91 -1.765 5 9 141 -8.395 7 10
42 3.885 5 6 92 -1.765 5 9 142 -8.395 7 10

43 3.885 3 6 93 -1.765 5 9 143 -2.599 ? 11
44 -2.196 4 6 94 -1.765 5 9 144 -. 750 7 12

45 -2.196 4 6 95 -6.090 5 9 145 -. ?S0 7 12
46 -2.196 4 6 96 -8.522 6 9 146 -. 750 7 12

47 -2.196 4 6 97 -8.522 6 9 147 -5.660 ? 12
48 -1.140 4 6 98 -8.522 6 9 148 -5.660 7 12
49 3.801 4. 7 99 -. 593 6 9 149 -5.660 7 12

50 3.801 4 1 100 .578 5 111 150 -5.660 7 12

for N correspond in general to regions where N is a an N level Gaussian quantizer which agrees to within
perfect square. Apparently, for values of N greater than about one percent with the actual computed mean square101, polar formatting is always the better of the two error given by Max 141. This error expression is

methods. rhe left column of Table I contains a listing of 2.73No
the 31 values of N for which rectangular format gives E(N,.g)- (15)
smaller error. Table II gives an indication of the relative (N, +0.853) "

efficiency of polar and rectangular formatting by tabulat- Using Wood's approximations, we obtain for the
ing (E - E,)/E, for values of N from I to 150. Also in Rayleigh density a similar error expression which also
Table II may be found the best number of magnitude agrees well with the actual computed error. This error
levels N, (with N.-greatest integer less than N/N,) and expression is
the best number of rectangular format levels N, (with 0.9287No
N, - greatest integer less than N/N,) for each value of N E( N,, r) - ....N(16)
from I to 150. For values of N larger than 2000. we may (0.596+ N,)(
make use of approximation methods. By use of these approximate error expressions, we again

find the values of N where rectangular format gives

IV. APPROXIMAIh COMPUTER SIMUI.AI ION smaller error than polar format. Computer simulations are
run up to a value of N- 10. We find that for values of N

Wood [6J describes a technique whereby one can ap- greater than 113, polar format is always better.
proximate the mean square error of an optimal quantizer Table I summarizes the results of the last two sections.
for large N. He then gives an expression for the error of In the first column we find the values of N for which the
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Fig. I. Ratio of optimum number of phase quanti)zer levels Io magnitude quantizer levels as a function of N.

('artesian format error is smaller than the polar format into (19). differentiate with respect to N ,. and set the
error according to the exact error expressions. In the resulting expression equal to zero. Solving for N,. we find
second column we find the values of N for which rectan-
gular format is better than polar format according to the N*- 1.63N'1/ (20a)
approximate error expressions. It can be seen that, in or
general. the approximate expressions are more pessimistic No - 2.662. (20b)
than the exact quantities. N,

which agrees closely with the Pearlman bound. Fig. I
V. MAGNITuDli-PHASE INFORMATION COMPARISON shows a computer plot of the actual ratio plotted as a

Afunction of N. The dotted line is the value 2.662. UsingAn interesting problem that arises in using the polar this value in (19). it is a simple matter to show that, for
representation is to find the best choice for the ratio of

phase quantization levels to magnitude quantization large N. the polar format error is smaller than the rectan-

levels. Pearlman [21 used distortion rate theory to obtain gular format error.

the ratio N#/N,-2.596. We now give a somewhat diffe-
rent derivation. VI. APPL.I(ATIONS TO SPECTRAL. PHASE CODING
We minimize (12). assuming N is large. We note thatssuing (7 iFrom the preceeding sections. we know that if 3.33 bits

asn.. I"- (17) or more per sample is to be used to quantize a white
x 6 Gaussian sequence, it is better to pair the members of the

and sequence and quantize them in a polar format rather than
2 2 2 simply quantizing the samples individually. We also know

I- I - x" (18) that the phase information is much more important than6  3 the magnitude information for minimizing the mean
Using these approximations, and (16) together with (12). square quantizalion error.
we obtain Spectral p ase coding (SPC) 111, [71 is one way in which

we may make use of the above two properties. Consider
a, as (I-/N,) 2 /3) O.98N, + ,(7./N,) 2 . (19) some arbitrary data sequence 0.,r,.. . V,. where :n out

(0.5965 + N,)- examples we let /.-4096. The message sequence is di-
Assuming (0.5965+N,)-cN,3. we substitute N,- N/N, vided into blocks of N samples; we consider the case
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N -32. Each block of N terms is then divided in half, with where
the first N/2 terms forming the sequence (a).)' and 4w
the second group of N/2 terms forming (a2),N 2-'. The *h'" - kp. (25€)
complex-valued sequence ( ' is formed from Consider the joint characteristic function of these two

a.-aI..+ia2,. (21) random variables:
We then form the spectral sequence (A. exp(i*,)) from

(N/2)-, *N(,,,.)- E.,E, exp(j(,, Re(,.) +w. Im{A,))))

Aexp(iG,)- X a.exp(-i49vp/N), ( j[ (N/2)-I
-0 "E,,E exp w, I , roso,

p- ... , -.- 1. (22) k-o

2W tN/1)-l

The SPC sequence (, is described by the following k-0

equations: I (

2 N (N/2)-i ex E ,,
a.= P E -Y[ eXp(4,)+exp(i4, , /2)] (21)(N/ai J eyp *-0

Nexp(i4rnp/N), nnO,. -N-1, (23) "[w'cos~k+w2sin0k] dO'JO1""JO(N/2 -1

where I f ,((N/2)-i +_________

S- max {A,). (24.) (21,) /2,-1 -0
P

4.,9,+,,(24.) #co(,+ tan,!L+ P.P CS(W- ) d#1' ... 402 ) - ,

(24c)

and #, -cos-'(A,/S). Equation (24) describes the coding -I W2 /2 rk (6
procedure and (23) the decoding procedure. , -0 1 (

SPC is essentially a polar format representation of the
discrete Fourier transform (DFT) of a random phase time where E,, and E, are the expectation operators over the
series. In [8) the conditions under which the real and subscripted random variables. However, this is circularly
imaginary parts of the samples from the DFT tend to symmetric. Using the properties of the two-dimensional
independent normal random variables are discussed. This Fourier transform, we know that the bivariate density
is an asymptotic result, and it tells us that the magnitude must also be circularly symmetric. However, this can
of the DFT is Rayleigh and independent of the uniformly happen if and only if the magnitude is independent of the
distributed phase. The uniform ( -. v) distribution of the phase and the phase is uniformly distributed over a region
phase makes it a simple matter to quantize this quantity in of support 2.1r.
an optimum fashion. Because of the relatively high phase
information content, this case of quantization is im- This theorem tells us that with the given assumptions.

portant. Indeed, as is shown in Section IV, as long as the we can guarantee that the optimal transform phase quan-

phase is optimally quantized, the quantizer characteristics tizer is the uniform quantizer. In many cases, experimen-

for the magnitude component are much less important. In tal data indicate that we are not far from the optimum

addition to the uniform phase property for the asymptotic result even when the conditions for the theorem do not

case, we can show that in some special cases the phase has hold for a particular sequence.

this property for small as well as large N. We now derive an expression for the quantizing error of

Consider (22). We assume a. can be represented as the SPC representation. The ideal unquantized SPC repre-

r.exp(if.) where 9. is uniform and independent of r. for sentation is

all 0,, io.n. Under these assumptions, we have the follow- Aexp(ie,)m .exp(i*e)+exp(i.(N/?). (27)
ing theorem,

Theorem: A, is independent of 9, and 9, is uniformly To begin with, we assume that the phase terms (4.) are

distributed for any arbitrary block size N. quantized to M equal step size quantization levels. From
[2J we have

Proof. tN/2)-l e",- sin(mel/M)exp((mM+),), (28)

Re(A,)- I ,,cos#, (25a) e ._ E
k-0

(N/2)-i where ip is the quantized version of ,. From experimen-

lm(A,) - . r, sn (25b) tal results it is found that quantization of the S parameter
A -0 is negligible and will henceforth be ignored. The quantiza-
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tion error E can now be expressed as TABLE III
A COMPARISON OF NORMALIZED QUANTIZATION ERROR FOR AN£ -A, exp(ig, A, exp( iO, (29) SPC SEQUENCE AND AN OPTMAL UNIT VARIANCE GAUSSIAN

P QVAN-IZER FOR DiFPERpwr PROBABILITY DENsITIEs
whr x~d represents .4exp(iG,,) using the quan-

tized parameter 0,,. Using (28) in (29) we have __________;A-

E-1. 1: sic0I)f.91 L-2 ?

2 . icmlM 00 7.90 ( -2

[exp(.(mM + l),)+ecxp(a(mM + 1)4'+(N/2))I 11 0. 4,; 7.0 noF- k

11( 'Ci 073

+( -sinc( I/M)A(x~p x~o_ .3E2A

2xP(iV(N2))).
(30) U-f' 7)R

W-4. 4~) L.50 r-. ~ .I -We square this quantity and take its expectation. using the
following expressions derived in Appendix A: oA -

i23.50 F- 7.'J sinc(m +I/M) XI)11.60 E-2 2.3-, F-

12 60

*exp(i(mM + 1)4,,) +exp(i(mM + OiN',+(/)]- ________ ____

S 2
=-- X sinC2(/+ IM

2 100This error expression agrees extremely closely with[I + cos(20p(MI + I))], computer simulations and with the error expression found
(3 1) in [I, eq. (22)1 which is derived by a different method. The

E[(ep~i,)+xp~iP+(V/2)) Isin~m+/U)second term contributes the most to E,
Ejex~iP,+xPi4,., 2 )~ imoo 1M We now present examples that make use of a sequence

of 4096 zero mean, unit variance Gaussian random vari-
[exp( - i(mM+ 1)tp,) +exp(i(mM+ l)4,,+(NI2 ))] 1 0o. ables. We first form the SPC version of this sequence

allowing four bits per SPC sample. The error expression in
(32) (37) predicts a mean square error of 2.2 X 10 2 per sample.

and The actual computed average error per sample for SPC
block sizes of 32 is 2.3 x 10 -2. An optimal Max 141 quan-

ter would give an error of 0.91 x 10-2 per sample. BN
E (( - inc(/M)'l (xp~op)+expiq,,(,1, uingSPC we create only a little over twice the minimum

achievable error for this signal and this number of quanti-
-(I-sac~/M)E{Afl (33) zation levels. However, if the signal statistics change and

where E ( )is the statistical expectation operator. Then the same quantizers are employed, what is the expected
E, -E((2))I - incI/A))'result?E PE(;)l-iclM) Table I[[ summarizes a number of computer simula-

sinc(I IIM)tions for Gaussian. double sided exponential. and uniform
+ sin(I + / M)random variables coded using both the optimal unit vari-2 1-0 ance Gaussian-Max quantizer and SPC. N(O.A) is the

'E( I +cos[2(IMf+ 0)*,3}. (34) zero mean, variance of A, Gaussian density; U(-A/12.
From the RPiemann-Lebesgue lemma J91 we know that. A/2) is the zero mean, variance of A'112. uniform den-

frlarge M. Elcos2(IM- + I~p], . Also, sity; and X(A) is the zero mean, variance of I/ A". double
for ),J~sided exponential density.Xsinc 2(1I+ 11/M) - I - sinc2( 1/ M) For this example, one can see that the large variance

/00 signals have lower quantizing error if coded with SPC.
-(I -sinc(l/M))(l +sinc(l/Mf)) Because the Max-Gaussian quantizer has very small %tep

(3) sizes near the origin, we expect that it will produce smal
errors for those signals that have a large amount of

a 2(l - sinc(l /M)), (36) probability in that region. The most striking characteristic
so that of these results is the way the normalized SP' mean

E,-E (A 2 )1-incIM)+S( sn~/4 square error remains virtually constant for each particular
P sn~/) 2  21-ic /t) distribution. SP(' tracks variations in signal power -.cr,

(37) well.
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VII. CONCLUSION we have

In this paper we have investigated in detail the opti- - I Sinc2(/+ l/M)[( I + cos 24,,(MIl+ 1)] (A4)
mum quantization of two-dimensional Gaussian random2 o

variables. Results are put forward to prove that, in gen- Equation (32) is obtained by a similar argument. For (33). we
eral, polar format is superior to rectangular format. Ap- recognize that
plications of this to a coding scheme (SPC) are studied in S
order to explain why SPC seems to exhibit robustness with z(exp(i0bP)+exp(i0tP(N/2i))A,exp(if,). (A5)

respect to variations in signal statistics and signal power. Therefore,

E ( (I - sinc( I / M )9IA,;xp(a9,)Iz }
APPENDix A -(I -sinc(lI/M)) 2EA ). A6

We will now derive (31). Taking the square of the expression
and moving the expectation operator through the sum leaves
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Two-Dimensional Quantization of Bivariate
- Circularly Symmetric Densities

JAMES A. BUCKLEW AND NEAL C. GALLAGHER. JR., mEmDER, IEE

Abstrect-Tin peeblm of 411111113110 a two-111memh16oafal randlow varl, shown that for some very important cases, notably for the
abl h o a hMvumu dessity ban decula, symmetry Is conaldeind ID dftalL Gaussian bivariate density, the polar format is asymptoti-
Two qmasadandti medthde coaideriA daag to polar aodretnua
raeameaom A sduple ammayad sufficest waid. Is deived cally superior.
tsami wk& of dhese two "wiladatlo. n is b. U -ot If polar format is to be used and the product N -NON,
qanadidoe Is damedbeet theqmeodoa artesasto the radooatthe isfixed, where Ns and N, are the number of phase and
aumajerw of plie qmmtadlnr knh to tdat of maptuad quatidner level magnitude quantization levels, respectively, the question
wbentbeprOI "of ithe ob hifl.A spk expeako ioded arises as to the optimum ratio N*/IN,. We derive a simple
for this rat Sot depeath onl wpm o he isgitude diribuilma. Sewetlepesodo hsrtota eed pnol h
example of ceoiiii circalitity symmetric Neartate dessitle we wod epesonfrti rtota dpnsuonol h
out ins detall ndag thes exproot magnitude density.

In Section III we provide several examples of common
circularly symmetric densities (e.g., marginal densities are

1. INTRuDUC-rION Pearson 11, Pearson VII, sinusoidal, and Gaussian), and

(C ONSIDER a two-dimensional random variable X we address the question of whether the rectangular or the
whose bivariate density is circularly symmetric. We polar format scheme gives a smaller quantization error.

desire to represent this quantity by a finite set of values.
One possible representation of X leads to a Cartesian 11. DEVELOPMENT
coordinate system expression wherein we individually CosdrtemasqreunizinerrEfa
quantize the two rectangular components of the random Cosdrtemasqreuniaio errEfa
variable. Another common representation leads to a polar polar format representation of the two-dimensional ran-
coordinate representation where we quantize the magni- dom variable x - rexp if]:
tude and phase angle of X. These two representations are No N, aM~ rda
chosen mainly for their computational feasibility and ease E, IX if 'f ,IreO - be-" 2 ' 2w
of implementation. Other authors have considered the C,- ' a > -
general problem of multidimensional quantization. Zador Implicit use has been made of the fact that in circularly
(11 derives an expression for the minimum error achiev- symmetric bivariate densities the magnitude random vari-
able by a multidimensional quantizer for an arbitrary able with probability density f,(.) is independent of the
density, but no insight into the required quantizer struc- uniformly distributed 1- w v) phase random variable. The
ture is attained. Chen 121 describes a recursive computer b, and dare the output levels of the magnitude and phase
technique to solve for a "good" quantizer, but the opti- quantizers corresponding to input levels lying in the inter-
mality of the final solution is not assured. By constraining vals (a,-,,a,] and (c,-1 .cj,. respectively. Integrating over
ourselves to circularly symmetric densities and also to the 69 variable, (1) becomes
either Cartesian or polar coordinate quantization schemes, No ,
it becomes possible to reduce the optimal two-dimensional .f (r 2 + b2)(c, -~ c )2b
quantization problem in one dimension. Max 131 develops jI1 ei 2,.,

necessary conditions for the optimality of a one-dimen- 1r
* ~sional quantizer. Panter and Dite 141 give a formula for .[sin(c-d)-sin(c, 1-. H(-.-r 2)

the asymptotic error to be expected for optimal mean 2
square error quantizers (of sufficiently smooth input den- It is shown in [51 that the optimal phase quantizer is the
sities). uniform quantizer. This means that c- c_- 2w] N. and

In Section 11 we obtain a simple criterion by which to c~, ) (c_ 1 -4)- Nefoj I,.N.Thslow
determine whether polar format or rectangular format us to simplify (2):
gives a smaller mean square quantization error. It isr

d April2, 197. ThisN, 
2si
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is Our problem is now one of characterizing the quantity

sinj f ' I)dr E . Panter and Dite 141 give a formula for the expected
-error of a minimum mean square error quantizer with a

b, (4) large number of output levels and a smooth input density.
f J~r) dr This formula is 00

The equation given by Max for the output levels b,' of an E- X (Ii)
optimal one-dimensional magnitude quantizer is found in N2

131 to be where

-, 
[f f_( x),/'dx 3

b" -f ,,1 (5) K . *o-
f r)dr 12

Roe [71 also derives some asymptotic formulas which were
where the optimal input interval endpoints a,' (for the later used by Wood [81 to rederive (Ii). Roe's formulas
one-dimensional case) satisfy depend on the truncation of a Taylor series expansion of

the input density. Wood, in his formula, explicitly states
b,+ b,., that the input density and the first few derivates (up to

2 (6) order five in some cases) must exist and be continuous.
Panter and Dite require that, as the input intervals be-If w e m in im iz e (3 ) w ith re s p e c t to th e a ,, w e a rriv e a t c o e v r s m l , t e d n i y f c i n m a b e p r x -

the necessary condition (for the two-dimensional case)
mated as a constant over each interval. In [!] it is shown

b, +b, 4  - b;+b 1  -at. (7) that a sufficient condition for (11) to hold is that J(x) be
sin 2 Riemann integrable, a much less severe restriction then

2 n No continuity or differentiability.

V -We make use of the approximation

sinx 2 XThis equation indicates that the quantizer interval end- X ) (

points for the optimum magnitude quantizer in the two- and of (11) in order to reduce (10) to
dimensional case is the same as the quantizer interval
endpoints for the optimum one-dimensional quantizer. ( ,r' K, 2 V2

From (4) and (5) and the preceding discussion, we have If 3 3 (13)
the following relationship between the output levels b, and

b,: where we assume E(r 2)-2 (this implies unit variance
ir rectangular marginal densities). If we let N be the total

N# number of output levels allowed to represent the two
- b,. (8) dimensional random variable X, we have the relation.

sin -
PN - NN,. (14)

Consequently, (3) becomes Since K, >0, it is simple to show that N,- O(N t/") and

si V 2 NO-O(N' I ') by differentiating (13) and solving for the
EN- (b2 optimal quantities. Making use of this fact and (14), weE(b)f f(r)dr. (9) may, assuming sufficiently large N, write (13) as

aa

K, No" 2,r
E+

where E'(.) is the statistical expectation operator. In 161 it
is shown that the mean square quantization error for a This is then optimized with respect to N# and yields the
minimum mean square error quantizcr is simply the input optimal N' as
mean square value minus the output mean square value. If
we denote by Ex" the mean square quantization error N#(2 -'')/ N.
produced by an optimal N level quantizer for the random 3 K,
variable X, we may rewrite (9) as

sin N N, sin!, si %in
- E (b,)2 E No E,, , I NY

N,') fIS ~r I J (r 2) _ .-- I

Ejr'). (10)
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This leads to the following expression for the minimal of (16); we find
attainable asymptotic polar format error:

NT (22)
2,,op, K,
N ',P-0 (17)

Now consider the problem of optimally quantizing the 11. EXAMPLES

random variable X in a rectangular format. The mean
square quanhization error E, of this representation is given For our first example we calculate the relevant parame-

by ters for a random variable whose marginal density is of

Pearson type VII. This distribution is a generalization of
m f - e (xf,)+(yhs)2  Student's i-distribution. The bivariate density is

, f fex,y),,, t  2v(v -)" -oo<x.y <o• £.(.,:y~d. , iS) , (2(, -1) + x+y')O+m I

where N, and NY are the number of levels in each of the (23)
respective orthogonal random variables. The other nota-
tion should be clear. Equation (18) may be written as (with v> I to assure finite variance) and the marginal

N. density appears as

E.- = , f (x-f,)f,,(x)dx 2 (v - i),r(v + 1/2)
N A ,r r(,)((2(, + X)+1/2) 00

+ f ,f(Y-h')2fY(y)dy. (19) (24)
j-i ,-

where 1(.) is the gamma function and where we have
where we make use of the fact that the first term in the weer. ste am.fnto n hr ehv
whre ketin18) uepese o ly n ft ta the rsern te normalized the distribution so that f(x) has unit variance.

depends only upon y. By symmetry arguments (since The maritude density is derived by substituting in r for
f,(x)-( we may argue that Ny-N,-N /2 The xZ y in fex,y) and multiplying the result by 21rr. as

quantizer that minimizes the above equation is simply the shown by a simple change of variable. Equation (24)
minimum mean square error quantizer for each of the two yields, after some tedious algebra,
components. Therefore, again using (i1), we have for
large N 2 3

2. - 1 (25)

where where B(.;.) is the beta function. We perform similar

f j(x)n/dx]3 operations with the magnitude density to yield

K.- 12 (20) K,- V(t 1) [8( 2; V -I)]. (26)

Comparing (20) and (17), we say that polar format is
asymptotically better than rectangular format if and only In Fig. I K, (solid line) and (2Kir/3)'/ 2 (dotted line) are
if plotted as a function of v for values from 1.1 to 21.1. As

shown by this graph, the polar format is always asymptot-

2K 2 K, 2v ically best for this class of distributions. An interesting
V ' point about this set of distributions is that, in the limit as

v--oo, (23) converges to a unit variance Gaussian density.

or Therefore, taking this limit in (25) and making use of
Stirling's approximation, we have

K ; L . (21) K..---- m2.72 1. (27)

In other words, if the inequality is satisfied and the Wood 181 estimates this number as 2.73 which is close to
original input probability density is Riemann integrable, our derived value. From (26) we have similarly
then we are guaranteed that there exists an No such that
for every N >No, polar format quantization will perform
better than rectangular format quantization. K,- !r )) &0.931, (28)

If polar quantization is deemed best for a particular

density, then what is the ratio N./N, that provides the which is the parameter for the Rayleigh distribution oh-
smallest total error? This question is answered by the use tailed in the limit. Using these two values in (21), we
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so

hog

1.1 5.1 9.1 13.1 17.1 21.1 V - 2 4 6 8 10 V -

Fig, 1. Solid line is a plot of K, as a function of V, and dotted line is a Fig. 2. Solid line is a plot of Kx as a function of V. and dotted line is a
plot of (2,w/3) '2 as function of V for Pearson VII density. plot of (2Kw/3)'/ 2 as function of V for the Pearson II density.

conclude that asymptotically polar formatting is better verges to a Gaussian density as v--oC. It is a simple
than rectangular formatting for Gaussian bivariate densi- matter to check that the expressions in (31) and (32)
ties. As a matter of interest, when we substitute the value indeed approach the correct limits. From the plot it can
of K, found in (28) into (22), we find the optimal ratio be seen that for values of v in the interval (0.0, 0.4) polar
N./N, to be 2.659. Pearlman [91 using distortion rate format is better. In the interval (0.4, 3.635) it is seen that
theory states that this ratio should be >2.596, which is in rectangular is better, and from 3.635 to infinity polar
agreement with our result. again is better. It appears then that for the circularly

For the next example, consider distributions of the symmetric bivariate density whose marginal density is
Pearson II class. The bivariate density is uniform, we have the interesting result that rectangular

v(2(v + I (X2 +y2))" format is asymptotically better than polar format.
f(x,y) - .(2(_+_I)-(x__yz))_ - n  In our analysis and in the examples considered so far

ff2"(v+ I)' we have constrained the class of quantizers considered to
two different types, the rectangular format and the polar

UJ-(2(v+ l)-(x2 +y')), (29)
format. In general, neither of these schemes will be opti-

where v>0, and U(.) is the unit step function. The mal for an arbitrary two-dimensional random variable
marginal density is with a circularly symmetric probability density. Zador IlI

gives an expression for the asymptotic mean square error
r(v+ 1)(2(v+I)-_x2)O-/2U(2(v + IX2) E, of the optimal two-dimensional mean square error

f(x)- quantizer. This equation is
2'(v+ l) V r(v+ 2 )

(30) E, -C,/N, (33)

For v- we find that f(x) has a uniform distribution. For where
- I, we have that the bivariate density is uniform over a

circular region in the plane. Using (30), we find c,- 18"- fx.,Y)1/2dxd l. (34)

K. 2_ 6(31) For the Pearson VII density C,-4.0307 v/(v'- I, for the
(B3 / (31) Pearson II density C,-4.0307 v/(v+ I). Since, in the limit12B , 2t+ as v becomes large, both of these classes of densities

converge to the Gaussian, the smallest error atlainabic for
From the magnitude density we derive that a two-dimensional normal random variable is approxi-

mately 4.0307/N. The best that we can do with a polar
K,- + ) format representation is 4.95/N and the best that we can

24 - do with a Cartesian format representation is 5.442/N.
There is certainly room for improvement here. However,

In Fig. 2 can be seen a plot of K, (solid line) and the important thing to note is that the structure of the
12A,ir/3) '"2 (dotted line) as a function of t for values polar format quantize- is known while that of the theoreti-
from zero to ten. It should be noted that (30) also con- cal optimum quantizer is not.
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In Section II it was stated that a sufficient condition for IV. SUMMARY
(I) to be valid is that the magnitude density function be
Riemann integrable. For most density functions of inter- In this paper we have derived a simple criterion to

est in modeling physical systems, this criterion is met. One determine whether rectangular format or polar format
group of densities that does not meet this condition is the gives smaller mean square error for circularly symmetric
set of atomic densities, i.e., densities for which probability densities. The optimal ratio of phase quantizer levels to

mass is contained at a single point. In a circularly sym- magnitude quantizer levels is also derived. Several exam-
metric bivariate density, the phase must be uniformly pies including the Gaussian .ase have been studied in
distributed [ - ir, ir. The only quantity that can be discrete detail.
is the magnitude distribution, i.e., we may have "rings" of It is interesting to note that polar format is not always
probability mass distributed in the plane. Suppose we better than rectangular format even for the case of densi-
have a single "ring" of probability mass, where the radius ties with circular symmetry.
of the ring is one, i.e.,

F(r) - U(r- 1), (35) REFERENCES

It P. Zador. "Development and evaluation of procedures for quaniz-
where F(.) is the magnitude distribution function and ing multivariate distributions," Ph.D. dissertation, Stanford Univer-
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Conference. IEEE press, pp. 640-643. 1977.

f(x) - U( I - x ) (36) 131 J. Max. "Quantizing for minimum distortion," IEEE Trams. Inform
rV ] _X2 Theory, vol. IT4. pp. 7-12, Jan. 1960.

141 P. F. Panter and W. Dite, "Quantization distortion in pulse count
This density function is Riemann integrable, hence (I I) modulation with nonuniform spacing of levels," Proc. IRE. vol. 39.

pp. 44-48, Jan. 1951.
and (20) are valid. This implies the rectangular format 151 N. C. Gallagher, "Quantizing schemes for the discrete Fourier

error is O(N - 1). Now consider the polar format case. For transform of a random time series," IEEE Tran. Inform. Theoy,
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better for this density. By extending this argument, we 1979.
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Abstract because the data is first "compressed", then quan-

This paper contains several results in multi- tized, then "expanded". As a consequence the first

dimensional quantization theory. The first section nonlinearity is generally referred to as the "corn-

gives a simplified derivation of a well known upper pressor" and its inverse the "expander".

bound on the distortion introduced by a k-dimen- The fourth Section of this paper is an inves-
sional optimum quantizer. It is then shown that an tigation of companding in several dimensions. In
optimum multidimensional qu,.ntizer preserves the several dimensions the compressor characteristic
mean vector of the input and that the mean square is a mapping function
quantization error is given by the sum of the com- k
ponent variances of the input minus the sum of the f X (0,1)
variances of the output. Lastly, a general equa-
tion which can be used to evaluate the performance where X denotes the Cartesian cross product.
of multidimensional companders is derived. It is kiX (0,1) is of course the k-dimensional hypercuhe.
shown that the optimal compander must be conformal iI

everywhere. An example is given to show that as- In the companding approach to optimal quantization,
ymptotically optimal performance could be obtained we have quantizer output levels distributed it. the
through nonconformal companding schemes. hypercube. We choose from these output levels the

nearest neighbor (usually) to f(x), where x is the
I. Introduction input data vector. Our quantize3 output is thenf-

1 
Of this particular output level.

Block or vector quantization deals with the

representation of -ultidimensional elements with Our theory will hold for analog signal pro-
a finite discrete aet of values. The values to be ceasing In several dimensions also. It happens
quantized may naturally fall into a k-dimensional that it doesn't matter whether the noise is quan-
representation; typical examples are complex num- tization noise or any otler kind of additive noise
bers, positional coordinates, or state vectors, as long as the noise components in each channel are
In other cases, k-dimensional vectors arc fonud uncorrellated with one another. For example, let
from blocks of k samples taken from one dimension- us denote the error vector caused by vuantization
al signals. In 1964 Paul Zador published his Ph.D. in the hypercube as (rl, r2 , ..., rk) . Then the
dissertation which contains a number of very in- condition that is needed is Efrirj) =acgJj where
teresting results on the properties of optimal 61 is the Kronecker delta function. In a practi-
block quantizers for the r'th moment euclidean cal sense, this is not a very restrictive assump-
norm distortion measure (1). Among Zador's con- tion. It may be shown, at least asymptotically (as
tributions are the derivation of both upper and the number of output levels in the hypercube ap-
lower bounds on the distortion introduced by the proaches infinity), that the error vector in an
optimal quantizer. These bounds are derived with- optimal or random quantizer converges to a hyper-
out actually finding the optimal quantizer. Un- spherically symmetric probability density which
fortunately, at some points Zador's development is satisfies our above condition.
difficult to follow and alternate derivations and
extensions by Gersho 121, and Yamada, et al. [31 II. Random Quantization Uper Bound
have recently appeared. In Section II we present In (21 Gersho provides a very readable deriva-
an alternate derivation of Zador's random quanti- tion of Zador's expression for quantizer distor-
zation upper bound not treated in either (2) or tion. To improve continuity and readability we
(31. employ Gersho's notations the quantizer input is a

In 141 Bucklew and Gallagher show that for k dimensional random vector in Rk which is quan-
one dimensional mean squared error distortion the tized to one of N levels Xl, X2, ... 0 XN in Rk .
optimum quantizer has the property that the mean The space Rk is partitioned into N disjoint and
value of the quantizer output equals the mean exhaustive regions S1 , S2 , ... , SN. The quantizer
value of the input and also that the mean square is defined by the function Q(x), where for k-
quantization error equals the variance of the dimensional input value x_,
input minus the variance of the output. In (5)
Bucklew and Gallagher prove that the same results Q(x) -In, if Xs- ,  (1)
hold for constant step size minimum mean squared
error quantizers. In Section III we extend these Note that this definition does not require x i Si ,
properties to k-dimensional optimal block quan- although in practice yi is usually contained in Si.
tizers. The performance of the quantizer is measured by

the distortion
W. R. Bennett (61 was the first to model a

nonuniform quantizer as a zero memory nonlinearity D 12(111 - Q(x)11 r) (2)
followed by a uniform quantizer in turn followed k -- -(
by the inverse of the first zero memory nonlinear- where II denotes the usual 1 2 norm, the operator
ity. This sequence of operations is generally E(') denotes statistical expectation and the input
referred to as companding. The word arises X is a k dimensional random input vector. The case

N0tCmo~ IP



where r=2 is the usual mcan squared distortion. E{x- Q(x)lIr) = E(Pr), (9)
The expression derived by Zador and Gertho for the
minimum distortion Do obtained by use of the best so, by Eq. (2)
quantizer is r 1 E(pr)

0 - C= r(
Do - N k(k~r)lpc )Ilk/(k+r)' 1 r+k-l k N-i

where i f p Nl-VkP 1 kVkd0" (10)
1/Make the change of variables s - VkP <: 1.IiP~x)11 (fi-[/p(x)I]dx~l/, Marke

l i w l i< N I1 r N - 1D < --- J a ll-sl ds,
and where the constant C(k,r), called the coeffi- kV. 0
cient of quantization, is independent of the den-
sity p(x) and is in general unknown. This expres- or
sion is an asymptotic result valid only for large k
N. Two special cases for which the value of r(.-(N}
C(k,r) is known exactly are (21 0 <  N (11)

r/k k+r-r /k r (N -
C(lr) r 2 

"
, (4) k k

where r(*) is the gaamia function. For large N the
and following approximation is valid:

5 k+_r
C(2,2) - (5) r(N) k

361 k+r H .(12)

Consider the density p(x) that has a constant value (
of one over the unit volume hypercube; then
Ilp(x)jlk/(k+r) - 1. Consequently, Eq. (3) becomes Therefore,

Do - C(k,r). (6) D < kr/ k_ (12)

So, we see that by finding a bound on Do we also 
k

bound C(k,r). To find this bound we choose the Because D > Do, we use Eq. (6) to write
quantizer output levels to have a random distri-
bution uniformly distributed over the hypercube. r
For a particular input value x, we find the closest r(l+ )
output level and quantize to that value. Because C(kr) < r
this quantizer is not the optimum quantizer the kvr(1
associated distortion will bound from above the which is Zador's random quantization upper bound.
distortion for the optimum quantizer.

To begin, place at random N independent uni- III. Moment Properties of Optimum Quantizers

formly distributed k dimensional samples in the
hypercube. These will be our output levels. We In (4] and (51 it is shown that for minimum
take the quantizer input X to have a uniform dis- mean squared error one dimensional quantizers that

tribution over the hyporcube. We also assume that the mean of the input equals the mean of output

N is sufficiently large so that there is a very and the distortion equals the variance of the in-

small probability that the quantizer input is put minus the output variance. It is shown that

closer to an edge of the hypercube than to one of these properties apply with and without the equal-

the output values. Suppose that an input value x step-size constraint. In this section we general-
h v s gize these results to the k dimensional case.has arrived and is sitting in the hypercube waiting

to be quantized. The probability that one partic- We are interested in the properties of quan-
ular output value is within a distance 0 of this tizers designed to minimize the distortion defined
input s.mple is given approximately by the volume by Eq. (2) for r - 21
of a sphere of radius p about that sample point,or 1-.sf11lx - .) [2_(14)

Prob (one particular output level is k Wi

within p of the input sample) . VkP , (7) Many constraints we impose on the quantizer can be

imposed by the functional form of Q(x); for ex-
where If Vk is volume of the unit radids sphere, ample, the k dimensional version of the equal-step-
then Vkpk is the volume of the sphere with radius size condition might require the regions S1. S2,
0. We are interested in the closest output level .... SN to have equal area and be jointly con-
to the input s.imple. We really want to know the gruent. A variational approach is used in the
probability that the closest output level is with- derivation. Assume the optimum quantizer is Q-(x);
in a distance p of the input sample. To compute so, an arbitrary quantizer characteristic can be
this probability, we combine classical order sta- represented as
tistics with the result found in Eq. (7). By
employing this approach, we compute the probability Q(x_) Q o(x) + C 6 Q(x), (15)
density f(P) for the distance between the input
sample and the nearest output level to be where r. is an arbitrary real variable and 6(.(x) is

k N-I k-l an arbitrary variation chosen so that Q(x) satis-
f(P) - Nil Vkp I Vkko (8) fies all constraints imposed on the quantizer. We

know that the optimum choice for t is E-O; it is
Dy construction 0 * Ix-yl~' , where x is the input this value that minimizes the distortion D. Thus,
value and x, is the output value. Consequtntly, aD/ac - 0 at C - 0; so,



" L-0 " t x -lX Q(X) 11211 - 0 (16) qeneral conditions, E(rirj } - k hhere 6

or is the Kroenekur delta. Assuminq very small dis-2 tortion,j quod approximation to the final error

-2 (Ax - Q0(X)16QTx)W . O, (17) vector in the output is (f)(x) r. Let y be the
k - - - variable in the hypercube. If - f(x) then

where we note that Qx) is a vector valued function pW(f 1 ))
so that 6Q(x) represents an arbitrary variation and p Q) ,
consider the caii, where each component of this var- y if' (f(y))j
iation vector equals one; consequently, Eq. (17)
becomes Therefore the final output mean square error (mse)

may be written

E Nx - Q X)M - 0 , m e - I1

or f rT(f'l),T(£'l(y))(f'l),(f'l(y))r Pxk If,(f- (y~jd
E{X - E(Q0 (X)l . (18) X=(0,1)

Now consider the case where SQ(x) Q(x; then, Let x - f- (y) then dx - Iff-I)'(y)Idy and note

I- (x)Q(x) - 0, that (-1)'(YI .f'-l(y)) by the inverse

or mapping theorem (7). Therefore, making these
changes of variable, we obtainE( XT (X) }-E( 11 go (X) 1121} (19)
ro - f T[f,

(x l
)

lT
(fx) - Pxldx,-

When the optimum quantizer is in use, the distor- D
tion is again by the inverse mapping theorem. Denote

2f.(x)1_lT[ft (x)l _J E-(x) and note this is a

DO = k- - 0- symmetric matrix for every x. Therefore our prob-

SEX - ( - QO(x)T) lem is to optimize

k . .0 - 1 (x)Tf D (x_)dx
I E (E( I1Xt - E(FX)) - E(oQ + p-

2 Using a matrix identity the above integral becomes,
Ef () II . (20) tr{- (x)rrT p (x)dx

We combine the results of Eq. (19) with Eq. (20) DP
to produce Let us now take the expectation over the r variable

which is independent of any other quantity in the
0 
E(IX_) - (21) integral tone can make a random coding argument to

-0 - do this),

The results of Eq. (21) combine with those in r 
2  

rr r r
Eq. (18) to provide the multidimensional extension 1 1 2 1 n
of the one dimensional case found in 141 and 15). r r 2  

r r Efr
2
)

We note here that this derivation is quite general. E2rr1 
E  

2 2 r2n n
It applied to the unconstrained optimal quantizer
as well as the equal volume congruent area (equal
step size) quantizer because this constraint can 1 n rI ... ...... r 1
be included directly into the functional ford of
Qx). Thereforeme -E r tr([ l W x d ( 2
IV. Compander Error Derivation Sue m (!)}p(xdx .(

Our data will be assumed to be k-dimensional

samples from a probability density function p(x), This expression is of interest in its own right.
xC ERk . Denote Dp as the support of px). Let E{r2)/k is the mean square error per sample suf-

k- fered by the hypercube quantization. So the total
f s 0 - X (0,1) such that f is regular and onto. error is a product of two terms operating indepen-

P i.1 dently of one another. Denote the eigenvalues of
We force f to be onto because if it wasn't, E(X) as X2(x) (i - i, ... , k). Then

there would be code vectors in the hypercube that - i -
would never be used. This would imply that the {r 2  

k (X)
quantizer would have to be suboptimal. We use this "--
condition at only one point in the derivation as a 1- i W(x)
constraint on the optimal compander. All equations Since our map f is onto this implies

derived up to that point are still valid without k
m nthis restriction. We will sometimes represent this If' C) I I- - 1.

mapping as Opi-I

f - (f 1x), f2 (x), ..., fk( X))T. Let us minimize the me subject to the above con-

straint. It is easy to show first of all that

Let r - (rI, r2 , ... , rk)T be the error vector in Ai(x) - (x) for every i. So now minimize
the hypercube. As stated above, under some fairly



p X) dx subject to constraint Cp(x )C 0

0 Cp(x ) i

A( A~) kdx 2
k [ff(x)]= 0

Let 8(x) 0 Ax) k, so minimize
p(x) dx where f B(x)dx - 1. 0 . . . 0)

B ( ) 2 / k --

Gersho (2) shows that the optimal O(x) is propor-

ti,.,al to px) 1+2/k - pk/k+2W. This implies Cp(x I)

Ax) - p() k+2 /(1pi k+2 . Using these 0
2 (f (x)1 ]-Ix 2

h Ill E(r2 I II 
(!

eigenvalues, the se k k+2

optimal k-dimensional uniform quantizer is imple-
mnted in the hypercube this equation gives the 0 .... 0
same error as Zador's optimum quantizer. Our con- Cp(xk)
dLi ion for the optimal compressor, is all of the 1

eigenvalues of the symmetric matrix The eigenvalues of 1L(x) are 2 (-- C p(xl)2G il..

(X) - [f-()f- -- k. So the error may be written

k
are the same; this implies there exists an ortho- - pcx )d
normal matrix O(x) such that E2r

2 1 k x1

T()2 (x)4(x) - A 2X) k i-i D C2p(x)
2a

or I Efr
2  p ( x ) 

1-20
d x

2(x) ( IxZ If (x1If, (x)IT  C -

which implies W is an orthonormal matrix. = 
2 ) plx)O, (xll-2
[W- fr (x)d] LQpx) dx]

Since we know what A(x) is, in principal we could .. m
solve for f (x) for every value of x. Therefore Using 1,i3lders inequality we may show that UL 1/3
our condition for an optimal compander is that minimizes the error or

If' (x)I/cp(x)k +2 be an orthogonal matrix for almost me- E(r2)1,p 1,1/3

veryvalue of-x where c - 1/(lili )k+2 But looking at Zador'se coefficient for the one
evr vle fx hrec- /111k/k+2 )dimension case (see Eq. 4) we have

When k-2 this condition says that f(x) must " p1 11/3
be conformal almost everywhere. Excluding sets of -Dim m2

measure zero is an important point. Gersho points 12 N

out (for the 2 dimensional case) that conformal Therefore this compressor characteristic gives us
maps do not exist for circularly symmetric proba- the same error as the optimal 1 dimensional quan-
bility densities. One consequence of this is the tizer if in the hypercube we quantize with one
work by Heppes and Szuz [81 which shows that you dimensional uniform quantizers. We can quantize in
can't tesselate a circular region with an arbi- the hypercube using optimal schemes for a coeffi-
trary "surface distribution function" using regular cient of (as K )
hexagons. There must always be a "slit" where the
tessellation fails. This "slit" however is a sot __-__1/

of measure zero. It is only local conformality N 227e
almost everywhere that we need, not global confor-
mality. Therefore the best we may do with this compressor

We will now do an example illustrating the characteristic is a gain of - 1.42 in signal to
use of Eq. (221. Suppose our input probability qa

k quantizing noise ratio, at the expense of imple-

density p(x) can be written as T p(x ) . Lot menting optimal uniform quantizers in the hypercube.
-- k

i f p(x)
0
dx and our compressor function AsaseLondexample suppose agan plx) T px).

f - (f (xf, f (x 2 ), . fk(xk)) where f.(x.) - Suppose we choose the eigenvalues of J(x) to be

J p(x) dx. With little loss of generality, we

will assume f is regular. It is obviously onto.
I,'nce.



r k 1 2

A
2

s-i k-l
L -

This obviously leads to a nonconformal map. We may
using Eq. 1221 now evaluate the error for such a
compressor characteristic to obtain the mean square

error to be

me 2)r2} 1P1l 1 =l - X(r 2)llp (k-i)

W+2 (k-l)+2

which are the optimal coefficients for k-i dimen-

sional space. This implies the possibility of ob-

taining nonconformal mapping functions that will
asymptotically give optimal results.
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Abstract

A critical review of many important developments The input is first compressed by the nonlinearity

in quantization theory is presented beginning with GI(") whose output is uniforly Quantized over the
Bennett's 1948 paper [1]. The purpose of this interval [0,1). It is this quantized value that

study is to resolve some seemingly conflicting may be transmitted over a communication Link or
results. We then turn to a discussion block or stored in digital memory. When we require a true
vector quantizers. We show that minimum mean representation of this quantized value, this uni-

squared error block quantizers preserve the input formLy quantized value is expanded by the non-
mean in the output variable and that the error Linearity W(*). Bennett presents an expression for
equals the variance of the input minus the variance the mean square quantization error for a coepanding
of the output. We also illustrate a way by which system in the asymptotic (Large N) case. This work

the compander method of quantizer implementation for further extended by Panter and bite who studied
may be extended to block quantizers. the design of optimum non-uniform step size quan-

tizers. They derived asymptotic expressions (Large

I. Introduction N) for finding the minimum mean squared error quan-
tizer design.

The quantization problem has been around for In his studies, Bennett made a number of empiri-
ages. The fact is that a~most all real numbers cal observations concerning the statistical proper-
must be quantized if they are to be represented by ties of quantized signals. These observations

use of a finite number of digits. If we are to where given a theoretical foundation by Widrow 3.

choose a real number at random, the probability is Widrow showed that the instantaneous quantization

one that the number would need to be quantized for error, which is a signal dependent error, can be
representation with a finite number of digits, treated as statistically independent from the sig-

Early modern work on quantization includes the work nal and uniformly distributed over the quantizer
of Bennett [ , and pranter and Di e [2. Bennett step size (for equal step size quantizers) when the
is the first to present an analysis of companding number of quantization Levels is sufficiently
systems. A typical companding system is shown in large. In another often referenced paper Smith [4
Fig. 1, where the sy tem input is x and output is further extended Panter and Dite's results and com-

Y. pares theoretical and experimental studies. These

"'G'I(uI v J ) four papers by Bennett, Panter and Dite, Widrow,
and Smith form the basis for subsequent work on
quantization.

9 ' 3y 1957 there was still no exact solution for

the optimum quantizer; however, during this time at
BSPL Labs, LLoyd C5] completed an unpublished

as 0 technical memorandum in which he provides a method
_- of soLution for the optimum quantizer. it is un-

y fortunate that Lloyds work was never published be-
F4ESSOR UNIFRM QUANTIZER EXPANDER cause it is Max's 1960 paper 163 that receives mostof the acknowledgement for solving the optimum

quantizer design problem. Max's paper is probably
Figure I Typical Companding System the most widely referenced paper on quantization.

In their respective papers Lloyd and Max develop
necessary conditions for the optimum quantizer;

*This wo, ..s supported in part by the Air Force however, these conditions are not sufficient and

Office . Scientific Research under Grant AFOSR they can be satisfied for non-optimum quantizers.
78-3605. In 1964 Fleischer (7] presented conditions under

To be p-t6e.ted ,?th e 12th A .ut Stfmao6iu ot Syatem rhoeito, Md 19-20, 1980, V iig9inj4 Beach, /iJ gLi.



which max's results are also sufficient, signal is equal to minus the mean squared error.
Fleischer's conditions establish that Max's results Consequently, for minimum mean squared error quan-
are both necessary and sufficient for the optimum tizers, the signal and noise are negatively corre-
quantization of many random variables which have lated, but this correlation is near zero for qua.-
common distributions such as Gaussian or Rayleigh. tizers with small error. In section III, we

We move to 1977 when Sripad and Snyder [83 con- present a novel derivation of the aforementioned
sidered the correlation between the input signal properties; this derivation is general and is valid
and quantization noise. Their work actually for both the optimum non-uniform step-size and uni-
represents a re-evaluation of Widrow's results, form step size quantizer.
They developed necessary and sufficient conditions To this point we have only discussed the quanti-
for the quantization error to be uniform and un- zation of scalar quantities. Often the data to be
correlated with the input. These conditions are quantized naturally falls into a k-dimensional
very restrictive and are not satisfied by most com- representation; typical examples are complex num-
mon densities of interest. Although Sripad and bers, positional coordinates, or state vectors. In
Snyder do not actually do so, the flavor of their other cases, k-dimensional vectors are formed from
paper is to contradict the observations of Bennett blocks of k samples taken from one dimensional sig-
and Widrow that the quantization noise behaves Like naLs. The topic of block or vector quantization
uniformly distributed, uncorreLated (independent) deals with the representation of multidimensional
additive noise. The difference between these ap- elements with a finite discrete set of values. In
parently conflicting claims is that Sripad and 1964 Zador published his Ph.D. dissertation which
Snyder are saying that quantization noise is usual- contains a number of very interesting results on
ly not exactly uniformly distributed and uncorre- the properties of optimal block or vector quantiz-
Lated with the signal, while Widrow is saying that ers for ,he r'th moment euclidean norm distortion
although these properties are not exact they often measure [103. Among Zador's contributions are the
are almost valid. Experimental evidence seems to derivation of both upper and Lower bounds on the
verify Widrow's ronclusions as being valid in most distortion introduced by the optimal quantizer.
situations while Sripad and Snyder are cautioning Unfortunately, at some points Zador's development
us to be careful in *oplying Widrow's conclusions, is difficult to follow and alternate derivations

The work of Widrow, and Sripad and Snyder ap- and extensions by Gersho E11) in 1979, and Yamada
plies only to uniform step size quantizers with an et. al. [12) in 1980 have recently appeared. In
infinite number of output levels; of course, real section IV we present an alternate derivation of
quantizers have only a finite number of output 1ev- Zador's upper bound. Unfortunately, this work on
els. Thus, for a real quantizer the error analysis vector quantizers provides very few clues on how to
may be divided into two parts: one part occurs when actually find the best quantizer and this remains
the input signal falls within the quantizer's an unsolved problem at present.
range, called non-truncatiin error, and the other Some of the early work on the implementation
is called truncation error nd occurs when the in- vector quantizers actually occurred in the study of
put signal falls beyond the quantizers range. The computer-generated holograms; see the work of
analysis of Widrow, and Sripad and Snyder implicit- Pearlman (13) and Gallagher (14) for references.
ty assumes that the contribution of the truncation The questions treated in this work concerns the
error can to! made arbitrarily small by choosing the representation of two-dimensional vectors in quan-
quantizer rango to be arbitrarily large. For a tized polar format and quantized rectangular for-
44tantizer with a finite number of output levels mat. The reasoning behind this work is to investi-
this is not possible because the quantizer error gate the relative merits of those two-dimensional
wilt increase it. an unbounded manner as the quan- quantizers that we know how to implement whereas we
tizer range increases. If we turn attention to op- don't know the optimum implementation. In their
t'-m.m uniform step size quantizers, where the quan- 1978 paper Pearlman and Gray [15) employ an infor-
tizer step size is chosen so as to minimize the to- mation theoretic approach to study the quantization
tal error, we can study the optimum relationship of two-dimensional Gaussian vectors where the
between the truncation and non-truncation errors, vector's X and Y components are independent, zero
We may then study the I niting behavior of the er- mean, and identically distributed. In particular
ror as the number o output levels becomes large they compare polar quantization against rectangular
and determine the rel je effect of the truncation quantization. They show that, when the vector is
error. In section is we will study the effect of in polar form, the phase component carries signifi-
trunariori errr and illustrate through an example cantLy more information than the magnitude com-
the fact that truncation can not be ignored. ponent. As a result, the phase component should be

Optimum quantizers, both uniform step-size and quantized very finely in comparison to he magnitude
non-uniform step-size, possess a number of in- component. Pearlman and Gray show that for a fixed

teresting propertie.s not proven until the 1979 pa- number of output levels NPNR = constant, the op-
per of Bucklew .J Gallagher (9. Here it is shown
that for " ,on-uniform step-size minimum mean timum ratio between the number of phase levels P
*n'j ,rror quantizer the output mean value is and the number of magnitude levels N is approxi-
,u, to thP niput mean value. It is also shown
that th, qL. ntizer's error is equal to the input mately NGINR 2.6. In 1979 using a non-
v,ri,irce min- the output variance. In an unpub- information theoretic approach Bucklew and (,a-

,she, mn.ir. ' 'urklew anI Gallagher prove that Lagher (16] rederive this same ratio and then gen-

,he minimu- in squared error uniform step size eralize the analysis to circularly symmetric dis-
q,iantizer *)ssesses these some two properties. By tributions (17]. It is found that in most, bit "s-

using the,e ,;r,)perties it can also be shown that all, cases polar format quantization is better than
corr,,tltion ietween the quantizer error and input rectangular format.



The problem of the design and implementation of 1+6/2
optimum vector quantizers remains open. Sections f(x(3)
IV, V, and VI of this paper will discuss some re-
cent work toward the solution. In section IV we
show that the optimum vector quantizer shares some therefore, for Large T
common properties with the optimum scalar quantiz-
er; in particular the mean value of the quantizer A,2 1+4/2 A

2

output equals the mean value of the input, and the D - 2 Cx - T 7 Y+ dx +
mean squared error equals the input variance minus lXI
the output variance. Section V contains a simpLi-
tied derivation of Zador's upper bound on the quan- -6 -(1+6) -(2+6) A

2

titer error, and section VI discusses the possibil- K + + K 12
ity of extending the companding concept to multi-
dimensional quantization. where

1I. Truncation Errors in Optimum Uniform K. 6  a2

step-SIzeantizers K 1  T + (4)

Much of the work dealing with the properties of K = "-6

uniform step size quantizers assumes a nonzero 6T6

step-size a with an infinite Na- number of output A(2+6)
Levels. In other words the quantizer has infinite K =1T
range and never reaches a saturation point which is
'the largest (or smallest) value to which an input and

may be quantized. If an input value falls between
the Largest and smallest saturation points, we say 

K3  ( )2

that it is within the quantizer's non-truncation
region. If an inpi t value falls beyond a satura- Equation (4) may be rewritten as
tion point, we ;ay that the input falls within the
truncation region and call this type of error trun- Na A2
cation error. Practical quantizers have truncation + K1 (74 - j•
errors and it is the tradeoff between the trunca-
tion and non-truncation errors that is optimized This is an approximate expression valid for Large
when we design a minimum error quantizer. N. To find the optimum value for A, we take the

A common approximation for the mean squared er- derivative of 0 with respect to a and set the

ror of a quantizer with st(-) size a is a2/12. This resulting expression equal to zero. This yields

approximation is derived under the assumption that 6 z
the truncation error is negligible. In many non- (NA-6 =

pathological situations the contribution of the () 66K1
truncation error can iot be ignored; this can be
most simply illustrated through an example. Con- consequently, the minimum D is given by
sider the probability density function

1+62 (1) + 2 (7)

Let the non-truncation region be (-TT), where t Depending on the value of 6, the value of 0 can be

value of T is approximately given by T=NA/2. If significantly Larger than the common a /12 approxi-

the quantizer input falls in the region CT,-), the mation. Loosely speaking, the validity of this ap-

output value is T+A/ . If the input falLs in the proximation seems to depend upon the existence of
region (- .,T, the out t is quantized to -T-4/2. higher order moments. If all moments exist, then

If the input fall wi , the non-truncation region the approximation appears to be asymptotically

(-T,T), then the mean ..uared is accurately apprcx- correct. If only a few moments exist, it does not

imatpd as A2112. Because the density in (1) is seem to be a good approximation.

ven, we can write the following approximate ex- 111. First and Second Moment Properties of
pression for the mean squared error D - _ ptim--,uantzers

z" At this point a general definition of a quantiz-
2 I -I ]f(x)dx +.TFP(Ixl < T) . () er is required. First, the input signal space is

partitioned into N disjoint and exhaustive regions
in the Limit as the number of output Levels N goes SI,S2,...,SN. The quantizer function is defined by

to infinity, the value of T also approaches infini- the function Q(x), where for input value x

ty and the v' '. of A goes to zero. Consequently,
for Large i., -. econd term in (2) is accurately G(x) a Yt, if x C S1 • (8)

representr .f d2/12. In the first term of (2), Note that this definition does not require y, c S ,
for lar. iaLues of T, the density in (1) may be
approximated as although in practice y, is usually contained in Si.



The performance if the quantizer is measured by the that the correlation between the quantization error
mean squared dis ortion and the quantizer input is equal to the negative of

D . ECX-( 3 ( the mean squared error.

IV. First and Second Moment Properties 
of the

for random input X. Assume that the optimum quan- Optimum Vector Quantizer
tler character stic is denoted by Q0 (x). At this
point, charayter %tic isdenot d thy Qrestri t the As the second moment properties for the vector
point, we may or may not add the restriction the quantizer are similar to those properties discussed
0 (x) represent an uniform step-size quantize?, in the previous section for the scalar quantizer,

This restriction may be represented in the func- we will only sketch their derivation. We consider
tionaL form of Q(a) and 0 (x). Consider the quan- the k-dimensiona case where the distortion D is

tizer function Q(x) Q0 (x) + c6Q(x), where 6Q(x) measured as

represents an arbitrary variation and c is a real 0= I E(l!-gwli 2), (17)
valued constant. It should be noted that the term

E6Q(x) must be such that g(x) is a Legitimate quan- where X and Q(M) are vector valued, and
tizer characteristic. If the uniform step size denotes the usual Euclidean distance norm. Again a
restriction is in place, then Q(x) must satisfy variational approach is employed, where an arbi-
this restriction clearly c = 0 is the optimum trary quantizer function Q(x) is written in terms
choice for this parameter; thus, of the optimal quantizer as

Q(x) a (-0 + C 6Q(x),
0 =0 ,(10)---

=1 for a vector-valued variation 6Q(x). As before, we

take the derivative of 0 with respect to c, and set
or the result equal to zero at c=O; the result is

EX-o (11 E(CX-0X)T 6KQ(X)) O, (18)

As proven to this point, the condition in (11) is where [ ]T denotes the transpose of the column vec-
only a necessary condition for the optimum quantiz- tot. This expression is both necessary and suffi-
er. In order to prove that this condition is also cient for the optimum quantizer 0 (M). The optimum
,ufficient we consider the error O for an arbitrary vector quantizer also has the following properties
i(untizer Q(x) - 00 (x) 4 c6(x). analogous to those scalar quantizer properties

D E((X-Q(K)
Z 
) found in (14), (15), and (6):

- ((EQCt))
2
) E(CX-Qo(X)]TQo(X)) . 0 (19)

ECXQ0 - ?cE(CK-0 0(03)60MK) ( x2(9
2 ) ((JX-0 0(A)II) a t

( x  ) " E(iiQO()11 )],(?0)

The first term in this expression is the error for and

the optimum quantizer 0 (x). The second term is 1 TQ(X)-x]T ) - 1 E(JJQ0(X)-XII2 (21)

zero by (11), dnd the third term must be non-

negative. Con, eqjentLy (11) is both i necessary V. Zador's Random Quan';zation Bound
.nd sofficient r,ndition for an optimum.

We An use (11) to show that for the optimum The quantizer input is a k dimensional random
r4Jdntizer the mean of tne output equals the mean of vector in Rk which is quantized to one of N leveLs
tne input. To oo this we choose the arbitrary n R The s
4ariation 6Q(x) 1; th "efore by (11) k pace Rk is partitioned

into N disjoint and exhaustive regions

E(X-Q 3 (X)) 0. (13) S?,s5,...,SN. The quantizer is defined by the

SIf wp choose ) x, then function g(x), where for k-dimensional input vatue
if wecose0 () O(x), n

E(XQ (0)) Lt I(40 a Q(x) = yip if x K Si.

rd onsequent' The performance of the quantizer is measured by the

-(X)) =E(E - EC(0o(X)]) , (15) distortion

and finally,

£(V- E{[X-Q, X)l 2 (16) The case where r=2 is the usual mean squared dis-
E tortion. The expression derived by Zador [10] and

ion ;tates that the mean squared error Gersho E11] for the minimum distortion 00 obtained

for the opti,.in quantizer equals the input variance by use of the best quantizer is
xtnus the output variance. Equation (16) indicates



t between the input sample and the nearest output

D N k C(k,r)Ilp(x)ll k(kr), (22) Level to be

where p(x) is the probability density for the input f(o) = NEl - Vk kIN'1Vkko (25)

vector X, 4nd
Note that for Large values of N this probability

dlea density goes to zero rapidly as a increases. By
-- 7 -- -d " construction p IIK- Il, where x is the input

The constant C(k,r), called the coefficient of value and yi is the output value. Consequently,

quantization, is independent of the density p(x)
and is in general unknown. This expression is an E(11 - Q(X)#l

r
) a E(o r; (26)

asymptotic result valid only for Large N. Two spe-
cial cases for which the value of C(k,r) is known so,
exactly are [113

C(1,r) -  1 - 2 ka n 
0Nr+k'lNC-VkPkN-1k V do

and hypercube k

C(2,2) = If we make the change of variables s = Vk0k ,  then
36 J-3 we use the fact that s < I to write

Consider the density P(x) that has a constant value
of one over the unit volume hypercube; then, N R

IP(xul1kI(k =r) I. Consequently, Eq. (22) be- D k -r/k ds

comes 
k

r N r(l1-j7r(N)

k N N rJ/ (27)
D N Ck,r). (23) k V rk + r

So, we see that by finding a bound on 00 we also where re*) is the gama function. For Large N the

bound C(k,r). To find this bound we choose the folLowing approximation is valid:

quantizer output levels to have a random distribu- ker
tion uniformly distributed over the hypercube. For r(N) k
a particular input value x we find the closest kr N

output 'level and quantize to that value. Because r (Ne-.)

this quantizer i% not the optimum, the associated
distortion will bound from above the distortion for Therefore,

the optimum quantizer. -r/k r
To beqin, plice at random N independent uniform- N r(1 k

ly distributed k dimeisional samples in the hyper- 0 rlk (28)

cube. These will be our output levels. We take kVk

the quantizer input X to have a uniform distribu-
tion o¢mr the hypercube. We also assume that N is Because L ) 00, we use (22) to write
• uffici ntLy large so that there is a very small

probability that the quantizer input is closer to r k)

an edg., of the hypercube than to one of the output C(k,r) < k (29)

values. Suppose that an input value x has arrived k
jfd is %itting in the .ypercube waiting to be quan-

tiied. The probabilil that one particular output which is Zador's random quantization upper bound.

value is within a "ance p of this input sample
is givpn approximate , 3y the volume of a sphere of V_. Companding in Several Dimensions
ri J|i', ibo)u' th~t sample point, or

For one dimensional quantizers companding pro-
vides a method whereby asymptotically optimum quan-

Pr b (one pirticular output level is tizers may be implemented in a straightforward

within o nf the input sample) = Vk k, 
2
4
)  

fashion. In several dimensions the compressor
characteristic is a mapping function

where if V. i, .,lume of the unit radius sphere, k
f: R - X (0,1), where X denotes the Cartesian

W k k is the volume of the sphere with radius 121 k

p. We ir. interested in the closest level to the cross product. The set X (0,1) is of course the

input sample. We want to know tbe probability that isO

the closest )ut Level is within a distance a of k-dimensional hypercube. In the coapanding ap-

the input *a pi . Tn compuce this probability, we proach to optimal qjantilzation, we have quantizer

combine ,,-ical order statistics with the result output levels distributed in the hypercube. We

found i, -'). By employing this approach, we com- choose from these output levels the nearest neigh-
pute the probability density f(p) for the distance bor to f(x), where x is the input data vector. Our



quantized output is then f-
1  

of this particular D P_ W-(y))d

output level. Denote the error vector caused by k lr+ (f1 ) , -

quantization in the hypercube as (rl,r 2,...,r k)T X

and impose the condition that E(r r .= i2 , that

where 6ij is the Kronecker delta. It may be shown Let x = f (Z), then dl a I(f (y)Idy and note

that as the number of output levels N in the hyper- that I(f
"1 ) 

(Y)I a by the inverse map-

cube approaches infinity, that the error vector for If Cf (y))

an optimal quantizer converges to a hypersphericaL- ping theorem. Making these changes we can write

Ly symmetric probability density which satisfies (C)] p(C
the above condition. In addition, for Large N D r-f( ) T f

there are an infinite number of quantizers each of Sp
which has approximately the same near optimum er- e -1T 0 -

1  
a t

ror. These quantizers may be generated as transLa- Denote -f (03 = (3 l(x) and note this

tions of one another within the hypercube. A sim- is a symmetric matrix for every a. Therefore our

ple way to visualize this fact is by use of the one problem is to minimize

dimensional companding system where the compressor T
function output is a uniformly distributed (0o,) D 

= 
S L E1 ()rPx(x)dx.

random variable. We can form translations of the $
uniform quantizer and still obtain approximately
the same mean squared error in the expander output. As discussed earlier, there is an ensemble of near

So, we may conider an ensembLe of near optimum optimum quantizers. If we now average the distor-

quantizers over the hypercube, where each quantizer tion 0 over this ensembLe, we assume that the error

approaches the optimum quantizer in the asymptotic vector r is sufficiently decoupled from the input

(Large N) case. By allowing us to choose (in an vector so as to be treated as an independent random

arbitrary fashion) f.-om this ensemble of quantizers quantity. Consequently, we have

for each input vector Cal, )... , we can D a tr( X Ca)rr Tp Cx aldx.

T S
decoupLe the error vector (rr 2,. .. , r ) from the10 21.. k-1
input so as to make this error vector approximateLy Y r Sa 

independent of the input vector. This procedure is
analogous to the technique of assigning a random
time origin to sampling nperations in order to So, the total error is a product of two terms

model the samp'-d signals as wide sense stationary operating independently of one another. Denote the

processes. eigenvaues of (x) as 
2 
(x) (i = 1,...,k). Then

Our data will be assumed to be k-dimensional -

samples from a probability density function p(x), 2 k 2
x Rk. Denote S as the support of pCx). L-et D = E I Pxi)t C ()dx. (30)

k iZi

f: S X (0,1) such tht f is regular and onto.
P 1 Consider, for the moment, a random vector with a

WrP car. reprejent this mapping as k
uniform distribution over the hypercube X (0,1);

i:1

f = (fk (),f2(*),...,fk (0)T. the f-
1C0) function maps this vector to a vector in

R with support S and density If (x1. Therefore

Lot r Crl,r ,...,r k ) be the error vector in the we have

hypercube. Assuming ery small distortion a good
approximation to the inal error vector in the out- k

put is Cf I)*(x)r, where Cf
1 )'(x) represents the S If'(C)I n x i1 i(x)dx = 1 (31)

matrix of partial derivatives of the inverse opera- pS

tor f-
1
. L* t y be the variable in the hypercube. The probLem now is to minimize the expression in

If 
= 

f(s), th,!n the probability density for y may (30) subject to the constraint in (31). We may do
he written ir "rms of the probability density for this in the following fashion: (1) Assume that ex-

a,. cept for h(x) all of the Ai(x) are the optimum

choice. (2) Use a variational method to optimize

(fxz i .(x) subject to the constraint (31). The result
_ )___ is that S(x) a A(x) for aLL i and that the optimum

, .- (y)) X(x) is

1 1

Tnerefore tU final output mean square error D may k(x) k p+x)-
2
/(ilpi 2)k2

be writtenAx)aPX (IIkk2

(I
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PASSBAND AND STOP3AND PROPERTIES

OF MEDIAN FILTERS*

N. C. Gallagher, Jr. G. L. Wise
School of Electrical Engineering Department of Electrical Engineering

Purdue University University of Texas
W. Lafayette, IN 47907 Austin, Texas 78712

ABSTRACT The results ilLustrated in Fig. I suggest the
concept of a filter "passband" and "stopband".

Median filtering is a signal smoothing tech- The given signal is in the passband of the N=1
nique that has been applied successfully in speech filter and the stopband of the N-4 fitter. If we
and picture processing. However the method view the median filter as one that passes edges
suffers from the want of a formal theory by which but not impulses, then edges for an N=1 fitter may
filter properties may be studied. In this paper be impulses for an N=4 filter. But what about the
Necessary and sufficient conditions for a signal N-2 and N=3 filters? Suppose the signal of Fig. 1
to be invariant under median filtering are is filtered twice in succession by the N=2 filter;
derived. These conditions state that a signal in other words, the filtered output is again fit-
must be Locally monotone to pass through a median tered. The result is a constant output identical
fitter unchanged. It is proven that successive to that obtained by a single filtering with an N=4
median filtering of a signal (i.e. the filtered filter. If the constant is filtered again, the
output is itself filtered) reduces the original output is the same as the filter input; the con-
signal to an invariant signal called a root sig- stant is invariant to median filtering. So, by
nal. For a signal of Length L samples a maximum filtering the original signel two times with an

1 N=2 or N=3 filter we have a resulting signal that
of 7 (L-2) repeated filterings produces an root is invariant to successive filterings, the same
signal. result obtained by a single pass with the N=4

1. Introduction

In many signal processing applications a method I iJ
called median filtering has achieved some very in- ' ' ' # I
teresting results. One useful characteristic of.
median filtering is its ability to preserve signal
edges while also filtering out impulses. Promis- . . . . . .

ing applications of median filtering are picture
processing, and speech processing [1-3). These
applications employ the median filter as a signal
smoother. The implementation of a median filter
requires a very simple digital nonlinear opera- . . , .
tion. To begin, we take a sampled and quantized
signal of length L; across this signal we slide a x x * * * . x x
window that spans 2N+1 signal sample points. The I j_
filter output is set equal to the median value of I ....
these 2N+1 signal samples. The fitter output is
associated with the time sample at the center of
the window. To account for start up and end ef- . . . 0 1111 . . Oi.,",

fects at the two endpoints of the L-Length signal, I . I I
N sampLes are appended to the beginning and the ,0
end of the sequence. The appended samples are
constant and equal in value to the first and Last
samples of the original sequence, respectively. * * ,,.,
As an example, consider the binary valued sequence x x x * * . . . • x x x
of Fig. 1(a), where L810 and Nal; the median fit- I , , , ,

tered signal is plotted below the input signal.
The appended values are marked as Xs. Figure I .

1(b) illustrates the filtering of the same input
signaL as for Fig. 1(a) but we set N=2; we set N=3
for the example in Fig. 1(c). The signal of Fig.
1 passes undisturbed through the NaI filter; how-
ever it is affected by the N=2 and N=3 filters. . . . . . .
The signal would be reduced to a constant value by p , p
an N=4 filter. 'It

*The research was supported by the Air Force Of- Fig. 1. Signal Filtered by Three Different
fice of Scientific Research under grants AFOSR Median Fitters (a) N - 1, (b) N = 2,
78-3605 and AFOSR 76-3062. and (c) N n 3.



filter. Note that the input signal of Fig. 1 is Length signal. By doing this, we assure that when

invariant to repeated filtering with an N=1 the initial signal's first or last sample is in

filter. We see that signals which do not reside the center of the window, the median filter output

entirely withi., the filter "passbdnd" can be re- equals this sample value. For a signal to pass

duced to their passband component by repeated through a median filter unchanged means that the
filterings. central sample value for each window position is

itself the median of the samples within the win-At present, there has been no proposed median dow.

fitter design procedure. There is no method by
which the fitter window size can be designed to Consider a signal unchanged by median filter-

account for some special properties of the signal ing. Assume that the window increments from sam-

or noise; the only way of doing this is by trial pLe to sample moving from Left to right across the

and error. In this paper we initiate the develop- signal and that the window is now centered at the

ment of a formal theory for median filters, We second signal sample of the original signal. We

will formalize the concepts of filter passband and know that the N points to Left of center have the
stopband. We described desirable signal charac- same constant value. If they equal the value of

teristics for signals employed in median filtering the center poifnt, then it (the center point) must

and show how some types of noise can be completely be the median. If they are Less than the value of

removed by median filtering and how other types the center point, then the N points to the right

can not be removed. These results will be of center must be all greater than or equal to the

presented through the development of a formal central value. If the N points to Left are

theory of median filtering. In section II e greater in value than the central point, then theNpoints to the right are all Less than or equal
toor the center value.ng Thu noteio tha th efme

present some basic definitions that allow us to
precisely state and prove a number of interesting to the center value. Thus note that the Leftmost
results. N 2 points in the window form a monotone sequence
resus. Tof points. Increment the windown another sample

II. Theory for Median Filtering to the right, so that the window is now centered

at the third signal sample. The Leftmost N+1 sam-
In order to give a precise statement for the pLes in the window form a monotone sequence. As-

theorems presented later in the section a number sume that the N Leftmost points in the window are
of definitions are necessary. We will always be not greater than (respectively, not less than) the
working with a sample Length L where each sample center point. Then, since the center point is the
is quantized to one of K different values. The median value of the points in the window, the N
fiLter window Length is the number of consecutive rightmost points in the window must be not less
samples considered when computing the running than (respectively, not greater than) the center
median. We will always take the window Length to point. Thus we see once again that the leftmost
be an odd integer (2N+1) for N-0,1,2,... As noted N+2 points in the window form a monotone sequence.
earlier, our convention is that the filter output Increment the window another sample to the right.
at position L is the median value obtained when By applying the same argument as before, we again
position L is in the center of the window. We de- find that the N+2 leftmost points in the window
fine the following signal characteristics: form a monotone sequence. Indeed, a straightfor-

1. A constant neighborhood is at Least N+ con- ward inductive argument proves that the Leftmost
secutive identTcally valued points N+2 points in the window form a monotone sequence

2. An edge is a constant neighborhood whose Last regardless of the window position. Recalling that
point is the first point of a monotonic change the appended signal has N constant points appended
whose List point is the first point of another to he right of the original signal, we see that
constant neighborhood having a different con- the appended signal is such that any consecutive
stant value from the first constant neighbor- N 2 points must be monotone. Thus a signal in-
hood. variant to median filtering must be such that the

3. An impulse is a constant neighborhood followed appended signal contains only constant neighbor-
by at least one but no more than N points hoods and edges.
which are then followed by another constant
neighborhood having the same value as the Now assume that the appended signal contair
first constant neighborhood. The two boundary only constant neighborhoods and edges. If tnt
points of these at most N points do not have center of the window is at any signal sample, then

the same value as the two constant neighbor- the points in the window are either monotone or
hoods, non-monotone. If the points are monotone, then

4. An oscillation is a sequence of points which the signal sample at the center of the window is
is not part of a constant neighborhood an edge not changed by the median filter. If they are
or an impulse, non-monotone, then the window must be centered on

Of particular interest is the class of signals a point in the constant neighborhood shared by two
that can pd-.. through the filter unchanged as well edges. Of the 2N+1 points in the window, at least

os the cLa.. ut signal, that are completely re- N41 of them are equal to the center point, .mno,

moved by filtering. Assume that an L-length sig- thus the center point is unchanged by medijr,

nal is filtered with a 2N+1 window. As noted pre- filtering.

viousLy, we always append to the beginning of the These observations are formalized in the fol-
signal an alditional N constants equal in value to Lowing theorem.
the first '..mple of the signal. Similarly, N con-
-,t nt point, .,r. appended to the end ,f the L- Theorem 1. Given a length L, K valued, %equeiLVe

to be merian filtered with a 2N+1 window, a nece -
*It has recvernty come to our attention that S sary and sufficient condition for the signal to be
Tyan has proven a version of this theorem in an invariant under median filtering is that the ap-unpublished manuscript. we have not seen a copy pended signal consist only of constant neighbor-

of this manuscript at can only speculate as to its
contents. hoods 3nd edges*.

L



The following corollary is a direct result of this Leftmost N+2 points must be monotone as seen ir
theorem. the proof of Theorem 1. Assume without loss of

generality that they are monotone nondecreasing.
Corolary. Fn a median filter invariant signal Assume that the window is now centered at the
to contain both regions of increase and decrease, point p+l. By hypothesis, this point must change
the points of increase and decrease must be in value. Recall that the Leftmost N points are
separated by a constant neighborhood (at least N+1 not greater in value than the center point. If
consecutive identical points), the N rightmost points were greater than or equal

to the center value, then this value at p+l would
As a result of this theorem it is possible to be the median. Thus, at Least one point to the

construct signals that are invariant to median right of center must have a value Less than that
filtering. ALso, given the space of all Length-L, of p+l. Thus there are N+1 points in the window
K-valued signals S it is possible to identify all not greater in value than the center point, and
those signals invariant to median filtering with a the center point changes. Therefore it changes
2N+1 window. We will call these signals the roots downward in value. Note that it can never achieve
of the filter, and this set of signals is denoted a value Less than the value of the immediately
as R Note that RN S for any N and that we preceeding constant neighborhood because there are

always at Least N+O points contained in the window
have the following lemma, including p+l itself whose values are all greater

than or equal to the constant neighborhood.
Lemma 1: For an L-Length K-valued set of signals

S, the root sets RN are nested such that ... So we see that the first point that changes

RN+1 RN  ... R0 = S. under filtering is preceded by but not necessarilyadjacent to an invariant constant neighborhood,

Proof. If a signal is invariant to a filter of and the point is contained either in an impulse or
ind'ow Length 2(N+1) + 1, then each neighborhood oscillation. We also see that upon filtering, the

of N+3 samples is monotone. Consequently each value of this point moves closer to the value of
neighborhood of length N+2 is monotone and the the constant neighborhood. There are two possi-
signal is invariant to a filter window of Length Lilities: the value of point p equals the value
2N I; i.e. RN+1  RN. It is trivial to verify of p+1, or the value of point p+l is greater than

that a window of length 1 reproduces any signal that of p. In addition, it can be shown that the

exactly upon filtering because the median value of value of point p+l is greater than the value of

a set containing just one point is the value of point p. Suppose that the two points have the

that point; thus, R = S. same value. As the window increments from posi-
u 0  tion p to p+1 one point moves out of the window on

We have estaolished that for a given filter Left side and another point moves into the window

window 2N+1 and a signal set S, there exist a root on the right. The point that moves out on the

set R of signals invariant to filtering. For a Left has a value Less than or equal to that of
N point pa1. Because we know that the filtered

given L-length signal s we represent the median value of p+l is less than the original value, the
filtered version of s by fN(s) for a 2N+1 size point that moves in on the right side must also

(2) have a value Less than that of pal, otherwise the
window. We represent by fN (s) the twice fil- value of p+l cannot decrease. If the value of

tered signal: point p+1 is the same as that of p then there
remain N points in the window less than or equal

f(2) ( f Nft
(s )]

. to the value at p+l (and at p) and also N points
N NN in the window greater then or equal to the value

wedfn (n) a stentms itrdsga: t p+1 consequently, point pal is the median andWe define f Cs) as the n-times filtered signal: would not change. Thus, the value of the first

N .n(n -l) (s). point to change must be greater than its predeces-
N  N N sor.

If s = (s), then % is a root of the filter. We Recall what is known concerning the Last con-

next prove that for any signal s there exists an n secutive point p that is invariant to filtering.
such that ~(n) * r here r is a root. The N points in the window to the Left of the

t N center point p are all less than or equal to p in

Suppose we are given an L-Length signal s that value; the N points to the right of p are aLt

is not a root. Recall that N constant points are greater than or equal to p in value. When the

con- next point pal, is centered in the window there
aspendcto the beinninf signal. By will be at Least N points Less than or equal to pstruction, the first original signal point is the i au n tlatHlpit rae hnopoin iesu tn at"e N+1 points greater than or
median of the interval for which it is the central equal t n aLe.t

point. As we slide the window from left to right equal to p in value. Therefore the median value

across the signal, the first point to move (i.e. can not oe Less than the value of p. For conveni-

where the window's central point is not the medi- ence we summarize this as the following.
an) must, by definition, be either a point con-
tained in an impulse or oscillation. Suppose it Observation 1: The first point to change value
is an impulse. By construction an impulse has two during a medTan filtering operation must be on the
constant neighborhoods of equal value on either opposite side of its predecessor than the most re-
side, and every point in the impulse is filtered cent constant neighborhood, and this point upon
to this constant value by one pass of the filter filtering moves toward its predecessor but does
window. Suppose the first point to be moved is not move past its predecessor.
contained in an oscillation. Let p be the Last
point unaffected by the median filter, and assume Continuing in this fashion, consider the point
the filter is centered at this point. Then the following pal; that is, pa2. Note that the value
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of p+2 is greater than or equal to the value of p. Thus at most I(L-2) window passes are required to
As the window is incremented to the right, p+2 is
Asnteredn the window n d t oithes g t o reduce the signal to a root. As a result of the
centered in the window and a point moves out Of previous discussion we have the following theorem
the window on the left. A new point enters the for an L-Length signal.
window on the right. The value of this point must
be either greater than that of p or Less than orequl t th vaue f p Ifit s lss hanor Theorem 2. Upon successive median filter windowequal to the value of p . If it is Less than or pa s s ny o -r t
equal to the value of p, then there are at Least passes any non-root signal will become a root

N-1 points in the window with values less than or after a maximum of I (L-2) successive filterings.
equal to p and at Least NI points with values

greater than or equal to p. Consequently, p+2 can Also, any non-root signal can not repeat, and the

not be filtered to a value Less than p. If the first point to change value on any pass of the

value of the new point is greater than that of p, fiter window will remain constant upon successive

then trivially, the filtered value of p+2 can not window passes.

be Less than that of p. The same reasoning can be To illustrate this characteristic of median

applied to points p+3, p+4, ..., p+N. For con- filtering consider the binary valued L=8 signal of

venience, we summarize this as the following. Fig. 2. This signal will be repeatedly filtered
by use of a window Length of 3 samples. The ap-

Observation 2: After filtering, the N rightmost pended constant terms are marked with x's. We see

points in The window centered at p must all have that 1 (L-2) = 3 window passes are required to
values equal to that of p or on the opposite side

of the value of p than the most recent constant reduce this signal to a root

neighborhood.
. . . oX

Consequently the value of p is always invariant X 0 * * O
to median filtering, and, In addition the same ar-
gument applies to any other (invariant) point to * * X * X
the left of p. Also, the point p41 has one of two
possible filtered values, as follows. X * * * . Afte., On. F.Iie, P.,

Observation 3: Of all the values in the window X

centered at p+1, the filtered value of p+1 is ei- X * * * * Atter T.-. Pa.
ther the value of p or the closest value to p on
the opposite side as the most recent constant 0 0 0 0 X

neighborhood. X 0 0 * a Aft TI..' P...

ay using an argument similar to that just A ..t
presented we reason that the filtered values of
p+2 through p*N are greater than or equal to the Fig. 2 Result of Repeated Median Filtering
filtered value of p+1. If the filtered value of
p#1 is the same as the value of p, then point p+1 To this point, it has always been assumed that
is invariant to filtering on the next pass of the the signal is quantized to K Levels for an L-
window because it is not greater than the value of length signal this requirement is not needed be-
p. Suppose, however, that the filtered value of cause an L-Length signal can have at most L dif-
point pol is greater than that of p. We must re- ferent values even if the signal samples are not
examine the pre-fittered point values. When p+1 quantized to specific values. Thus, we can always
is in window center, the N+I rightmost points must bound K from above by the value of L and all
all have values greater than that of p including results stated in this paper apply to unquantized
the rightmost point p+N+l. As a result, when signals.
p+N+l is ir window center, the leftmost N+1 points
have vaLue, greater than that of p and the fil- Ill. Discussion

tered value of p+N~l must be greater than that of The development in the preceeding section sug-
p. Consequently, on the second pass of the win- gests a number of interesting results. First, we
dow, after all the points have been filtered once, note that every signal in the space of signals, s
when point ptl is in window center, the N leftmost tha ee sil in th ace o s il ac S, can be filtered to a unique root with a
points are all Less in value than that of p+1, and bounded number of repeated filterings. Thus, the
the rightmost N points aLL have values greater elements of the root set RN partition S as illuS
than, or equal to that of p+1. Thus, p+i is the

median of the window and does not change value trated in Fig. 3 where it is shown how the signal
upon the second filtering. This yields the fol- space
lowing.

Observation 4: The first point to change value in
a medTa "tTtering operation remain-, invariantS
uputil dditionml fitter passes.

When ihe uiervation is made that ihe median
tiltering .perdtion is independent of whether the
window moves from right to left or left to right
aiross the signal, we see that the properties of
the first point to change value apply also to the
Last point in the signal to change value. Because

of the appended constant valued points to the
front and back of the L-length signal, the first Fig. 1. P3rtition of the Signal Space S be
and Last signal points are invariant to filtering. Eight Roots.

III m ll llll lmimmgl-- -



is partitioned by a root set with eight elements, coding. For this application the root set R
where upon repeated filtering every signal s c S3  corresponds to an alphabet set. The transmitted
is filtered to root r c RN and so on; we will code can contain either roots or ancestors. In

I r either case decoding is accomplished through re-
call Si the ancestor set of root r. - If a signal peated filtering.

s requires L filter passes to reach the root r3 we In this paper we have established several fun-

say that s is an l-th generation ancestor of r3. damentaL theoretical properties of median filters.

We know from Theorem 2 that any root has at most We have presented necessary and sufficient condi-

1 tions for a signal to be invariant to median

7 (L-2) ancestral generations and we know that the filtering and we call these signals roots of thefiler the have also shwt h at reetdfitr

root of a signal depends on the filter window filter. We have also shown that repeated filter-

, ing of any signal results in a root signal and
Size, i.e., a root for a window of size 3 may not have established the maximum number of filtering
be a root for a window of size 5, although a root operations required to reach a root. As a result

for a size 5 window is always a root for a size 3 of the theory developed in this paper a better
window. In a loose sense, median filters are a understanding of the potential applications as
type of lowpass filter with an increasingly narrow
passband as the window size increases, well as the Limitations of these filters is

achieved.

The application of median filtering to signal
smoothing problems introduces an interesting twist
to the concepts of signal and noise. A median References
filter has no design parameters other than window
size. It can not be designed to accomodate spe- 1. T. S. Huang, G. J. Yang, and G. Y. Yang, "A
cial signal or noise characteristics. In the ex- Fast Two Dimensional Median Filtering ALgo-
treme case a filter can completely remove a signal rithm", IEEE Trans. Acoust., Speech, Signal
component Leaving only noise. It seems desirable Processing, Vol. ASSP-27, pp. 13-18, Feb.
that a noise-free signal be a root signal in order 1979.
that it is invariant to median filtering. If the
root signal has added noise, then it may or may 2. N. S. Jayant, "Average- and Median-Based
not be possible to remove the noise by filtering. Smoothing Techniques for Improving Digital
Noise that can be filtered is noise that changes Speech Quality in the Presence of Transmission
the signal in such a way that the noisy signal is Errors", IEEE Trans. Comimun., Vol. CO-2, pp.
an ancestor of the same root. This noise can be 1:43-1045, Sept. 1976.
removed with repeated filtering. However, if the
noisy signal is now the ancestor of a different 3. L. R. Rabiner, M. R. Sambus, and C. E.
root, then it can not be removed by repeated Schmidt, "Applications of a Nonlinear Smooth-
filtering. This property of either perfect signal ing Algorithm to Speech Processing", IEEE
recovery or faLse signal recovery points to yet Trans. Acoust., Seh Si I ProcassLT
another application of median filtering - channel 55ASSF ,I7P. 3e3 . 197.



ROOT-SIGNAL SET ANALYSIS FOR MEDIAN FILTERS

G. R. Arce and N. C. Gallagher, Jr.
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

ABSTRACT

Invariant signals to median filters are called roots of the signal.
A tree structure for the roots of a binary signal is obtained. Showing a
state propagation property from which a state diagram Is obtained. The num-
ber of roots R(n) for a signal of length n and a window filter 2*s-I is ex-
actly represented by the difference equation R(n)-R(n-I) + R(n-s). A general
solution is obtained in a Z domain approach, and in a transformation ap-
p roach.

SUMMARY

q Many properties of a median filter may be described in terms of the
so called root signals. A signal invariant to the filter is called a root.

In this paper, a tree structure of the roots is modeled and implemen-
ted graphically. This structure has very attractive properties such as sym-
metry as well as a predictable pattern of state propagation. Each state in
the tree generates other states, not necessarily of the same kind; then, the
new states generate another group of states and so the tree structure
follows. The repetition of states in a tree is a function of the length of
the signal, and the number of different kinds of states Is a function of the
filter window size. At each stage along the tree, each state yields a num-
ber of roots.

On the binary signal we obtain 4 different states, states A & D yield
2 roots, and states B & C yield I root each. The relation for the number of
roots is: R(n+l) - 2*(A(n)+D(n)) + B(n) + C(n), where n represents the sig-
nal length. For the binary case the difference equation for R(n) can be
shown to be: R(n+s)-R(n+s-l) - R(n), where s depends on the window size. The
solution of the difference equation is obtained with a state equation appro-
ach. Let: R(k) -Xl(k);R(k+l)uX2(k);R(k+2).-X3(k),...,R(k+s-l)-Xs(k). By sol-
ving the vector state equation X(k+l),,[A]K x(k) we obtain the solution:
R(k)-[ I 0 0 0 ... O]X(k). Tber-efore a 'olu-tion to (A]k is necessary, where
the A matrix has the Torm of a bottom companion matrix. The characteristic
polynomial for the A matrix of size s by s is: f(X)-X s - Xs-l -1. Using
Sturm's theorem, we can see that the characteristic function has distinct
eignevalues only. Two different approache f are used to obtain Ak. One ap-
proach used the Z domain, Ak - Z'i{(zl-A) z} the other approach uses a
similarity transformation:X-MQ where Ak - M D M and D - M-1 A M. A
closed form solution is then obtainec[-showTngthat the nube ofrots for a
signal of length k is a linear combination of the eigenvalues raised to the
kth power. The Z domain approach yields the result:

R(ko  Lim 1 [_] k(z -),zS 2(Z 1) ,..,Z(Z-I), X(o)0~k) Z-Ot kp L0 i ZZ Zs - l L

where k is a specific signal length. In the paper we analyze in detail ev-
ery point touched in this summary.

The authors gratefully acknowledge the support of the Air Force Office
of Scientific Research under grant AFOSR 78-3605.
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* Sonmc Properies of Uniform Step Sime Quantizers Proof: Suppose g(x) is the optimum uniform quantizer.
Then

JAMES A. BUCKLEW. IdEM911t, IEEE. AND NEAL C.
GALLAGHER. JR.. tizaast, it~ 4fpx-(x)+.)02 d1_00 (2)

Ab~~c-Sowm properties of the opthinl meas-stmore error tsafforu hc mle
ilisiiaxr we trse.It is shiwn do dw .aas-sqm error (am) is whih iph
by &he haput varlsance minous the ouIat vaince. Furthervime1()d fgxfxdi.(
N wais. of Al) is the se, site of the uiformt qmmuadw.e with qualify
whems We support of the ramlomt varile Is coalmtll iua flil. Intervall A Poet2:For the optimum uniform quantizer0
cam of prb~ ikinUes Is give o Is tMso hn Is pvrodewi2
Ihaa one.ItIssshourmaIUImvN 2 ms-(b-a)/1l2. alle(b-a)Is a-q-4/2.
Ihe =Cme of the naltie ndrvim chat siaihe support of She Wapum
randolm wariable. Proof: Suppose g(x) is the optimum uniform quanazer.

In many problems ansing in the evaluation or design of a Then
control or communication system it is necessary to predict the
performance oaunfr unie.Uiomqntzs;are of0 g.(4)
interest because they are usually the simplest to implement and 8

because many noise processes in physical systems may be con- FN-3+4
sidre a te ois podce b auniform quantizing opera- I- (a+ (i+ l)A)2J 4 f(x)dx+az f(x)dx

tion. For example, the final position of a stepping motor or the J 0q+i
line drawn by the pen of a computer plotting device under a cc
continuous control may be considered to be corrupted by a +(a+(N- l))f (x) dxr
uniform quantizing operation. q+g£+(N -2)&

Because of the importance of these quantizers several authors I- ~ +I )have considered their properties. Widrow (11 shows that under -2I 1 (a+(i+l)&) ( 4 xf(x)dx+a 9* xf(x)dx
certain conditions the quantization noise is uniformly distrib- E qui*Js
uted. Gish and Pierce 121 show that asymptotically the uniform 01 ~dd
quantizer is optimum in the sense of minimizing the output +(a+N-() in

entropy subject to a fixed mean-square error. Morris and ~+(N -2)& 5
Vandelinde 131 show the uniform quantizer to be minimax. N-
Sripad and Snyder [41 later extended Widrow's work to give a _N I3a(+))[~~+(+))fqti
sufficient condition for the quantization error to be uniform and d a(+lA)(-0+i+IA-f~~+a)

-~uncorrelated with the input.
We now prove some additional properties of these quantizers + q c-a( I&2qc(N 2Awhen they are designed to minimize the mean-square error

(mse). We may write down the analytic expression for the
quantizer charactenistic g(x) as -2[ N- 3 (a+(i+ l)A)(q+e+(i+ l)A)f(q+c+(i4. l))

R(x)- a+ (I+ l)A. if q +iA<x <q +(i + -A -(q + it+ A)f(q + it+ i&) +a(q +e)J(q+ t)
Zfor i-O,- -,N-3()

where N is the number of output levels. We see that if x is less (6)
than q or greater than q +(N - 2)4, x is truncated to a or Simplifying this expression we obtain
a + IN - I ),%, respectively. An important parameter of interest is
the measure of the nontruncation region, (N - 2)A. N-2

Tihe 4uantizer characteristic (g(x) must be optimized with (A +2a -2q) I f(q + ii) -O.
respect to three parameters. q which fixes its position along the x10
axis, a which fixes its position along they axis, and A (a function
of N) which specifies the step size of the quantizer. Because it The solition I~tJq + iA)-O0 corresponds to a trivial solution
makes little sense to speak of minimizing the mean-square error because without affecting the mean-square error, we may always
of a random variable with infinite variance, we will always arbitrarily set flq+ iA)-O0IJ-0,-. -,N-2. Hence A+2a -2q-.0
assume f ' x 2f(x) dx<to which is what we wish to prove. 13

1Property 1: The minimum mean-square error uniform quan- Property 3: The mean-square error of an optimum uniform
tizer preserves the mean of the input random variable. quantizer is given by the input variance minus the output vari-

ance.

Mansc'.ript received April 23. 1979; revise October 25. 1979. This work
wai, bupporieit by the Air Force Office of Scientific Researc2h under Grant Proof:

VAFOSR 75.3605. This paper was presented at the 1979 Allertun Conference
on Informnat.ion Sciences and Systems. Monticello. IL. October tO- 12. 1979. ans.- E(g(x) - x)'

J A Buckiew was with the School of Electncal Engineeng. Purdue
Uiniversity. West Lafayette. IN. H~e is now with the Electrical and Computer -mE(x') - 2E (xs(x)) +E (g(x)j). (7)

rlnrginern Deparimeni. University of Wisconsin. Madison. WI 53706.
N+ C. Gallaghser. Jr. is with the School of Electrical Entlneering, PurdueWewstopimzthsxrsinwthepcto UigUniversity. West Lafayette, IN 47907. W iht piieti xrsinwt epc oA sn

018-9448/80/0900-0610$00.75 0 1980 IEEE



team nLANAcnioms ow INOmammiow TwIoev, vol.. 1-26. No. 5..%timwxrusIa 19w 611

a-9-4/2 we first obtain and delta approaches ieto. It is a %itnple matter iiw %Ii' liow ii
lili - -1111,. ' - % qc'irVwhrir. Nin14C M (1 1*- I atitI

E (xg(,x))-i !)'j) f iv4.1 s(~ X ,0 ( +Y'lf r) d , . this implies
10 2 qr+ia

rn ((i- 2 )x)d-I Jim (g(x)- X)1(x)dx-0
+(q-412 f (x)dx4-(q+(Nr-1 -='

M - by the Lebesgue dominated convergence theorem. fliis quan.* Ax) di (8) tizer is in general suboptimal, which implies that an optimal
fq-(N-2)A quantirzer must have even smaller mean-square error for each N,

and and hence its error must also go to zero. 0

1- 2lim-.~A -0 for the optimal uniform quantizer. -.

Le a )be the smallest interval such tha tf!tx)d-I
+ q- 2 fX)dx+ q+ N- H 2 Note that either ja) or JI may be infinite.

2 - 0f Property 6: Suppose fix) is Riemann-integrable. Then. for the

ft.) dx. (9) optimum uniform quantizer. limv_.(N -2)4 - b-a.
q+(N2)&Proof., Suppose Iirn,,,.(N-2)A<b-a. This implies that

Subtitte 9)and (10) into (8); take the partial derivative with for N sufficiently large we are always truncating some finite
Sustictuto (9) e hersl qalt eo W idta amount of probability mass, and so the mean-square errorrespct o Aand et he esut eqal o zro. e fnd hat cannot go to zero. This contradicts the previous property. HenceE (xg(x)) +qE (g(x))- E (g(x)2  + qE(x), (10) Iim_.(N(- 2) >b - a.

Suppose limv_.(N -2)4>b -a. This makes sense only if thebut £{ g(x)) - E(,x) for the optimum quantizer. Hence random variable is of finite support. So for N large enough thereE (xg(x)) + E ((x) and is no truncation error. In the Appendix it is shown that for a
m, E X' - E (g(x) 2 ) (I) family of quantizers with no truncation error limv_.mse/

(4 (2 /12) -I for a Riemann-in tegrable density function. So. for Nwhich together with Property I completes the proof. 0 sufficiently large. (N - 2)& >C >b - a < oo. Then
Sripod and Snyder (41 show that a sufficient condition for I-Jm Me Q an se

x -g(x) tobe uniform and uncorrelated with xis VI a Alim Ar0 Cim 12(N_-_2)

forn-±.±2,*-*, (12) or

2 C2

where #,(w) is the characteristic function of the input random lim (N - 2) nse) >jy (15
variable x and .(.i) - d#.(w)/d. Frequently in the analysis of A-
a system corrupted by a uniform quantizing operation it is Consider a suboptimal quantizer whose input intervals are oh-
assumed that the quantizAtion noise is uncorrelated with (or tained by dividing the interal (a. b) into N - 2 equal subinter-
sometimes independent of) the input. The next property demon- vals. Denote the mean-square er-or of this quantizer by msesup
strates that this cannot be done with the optimum uniform adisse ieb sba/N) hsqatzrhsn
quantizer. truncation error and hence

Property 4: Suppose the input probability density is I - Jim mfss - Jim mse505aRiemann-integrable. Then the quantization noise is never uncor- Nv-a 6 A/12 N-a (b -a) 2/12(N -2)1'
related with the input for the optimum uniform quantizer.

Proof Without loss of generality assume E(X) - 0. Jim (N -2)~ 3  (b-a)2 <C i (N -2) 2MSe. (16)
Suppose the converse holds. This implies N-012 <12 Ji

E ((x - g(x))x) -E(x') -E (g(x)x) -, (13) which is a contradiction since we have found a suboptimal
quantizer with a better mean-square error than the optimal one.but from Property 3 0

E (xg(x)) - E ( 04). Bennett 15) shows that the mean-square error of a uniform
E (x) -( SX)2)_0.(14) quantizer is approximately 42/12. assuming that the truncation

E~x2~E~gx)2 }.O.error is negligible. This is not always the case and in the
But, again from Property 3. the left side of (14) is the mean- discussion we will give examples for which Bennett's approxima-square error. This is a contradiction, since a Riemann-integrable tion may be very poor indeed. There are some special casesprobability density function necessarily implies that the mean- where Bennett's approximation does hold. The next property

4square error for any finite number of output levels is greater deals with one such case.
than zero (i.e., ftx) has no delta functins). 0 Property 7. Suppose the density function is Riemann-iniegra-

We now state an obvious property which will be used in ble and b - a< ao. T'hen for the optimal uniform quantizer we
several subsequent proofs. have sProperty 5: The mean-square error for the optimal uniform lim me
quantizer approaches zero as the number of output levels ap- YA'4/ 12
proaches infinity. Proof: From Property 6 limA,_.(N - 2)4 0 - h - a

P'roof: The mean-square error is given by E ((g(x) - xii). where 40 is the optimum S,. We may design a suboptimumn
and fo'r this to approach zero it is sufficient that g(x) approach X quantizer by dividing the interval (a,b) into N -2 equal subin-
in mean-square. Consider a quantizer with the parameters tervals and using these subintervals as the breakpoints for our
4 - I / v'-2 and q - - (IV - 2)&/2. The width of the non- quantizer. We denote the mean-square error associated with this
truincation region is (N -2)A - V- 2. Hence as N becomes quantizer by msesi;pt and the Atep size by %is _" (b -a)/(N -2).
large the width of the nontruncation region approaches infinity This quantizer has no truncation error. Hence from the Appen-
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lim msesu 1 . (17)
N-wi A/l2 K

NowCO
As (N)As im (N -2)A 5

lim Ls urn (N-2& N-o _
*N_. 0  Nvsc(N -2),&o lim (N -2)4 0

* implying IimN_.AS/4g- 1. For any quantizer whose nontrunca-
* tiofl region covers the support of the Ricmnann-integrable density

function in the limit as N uap roaches infinity, we show in the
Appendix that limN_.mse/(4A Ir 12) >I. This bound is arrived at
by ignoring the truncation error and is true for density functions
with finite or infinite support. Then

lim msesus lim (msesum 1 MS/12.00

ms.csuJ* li m (18) tC l

but D . 36 46 .0 SA

msu lim MW55 
0 OMfMAL > 1, (19) lgok

N-.oc i12 N- 41/12 Fig. I. K (solid tine) and D(N) (dashed ine) ploited as a function of

or Igaf

urn mtriimAL -It is interesting to note that Properties I and 3 are also shared
N-40 Q/ 12 by the optimal nonuniform quantizer as shown in (S]. As a

which is what we wanted to prove. 0 further consequence of these two properties we find that for the
In the above property we have shown that the truncation error N -2 cawe, the optimum uniform quantizer and the optimum

is negligible for the optimum uniform quantizer. if the density nonuniform quantizer are identical.
function has finite support. This is not true, however, for arbi- Property 7 is one of the more interesting properties proved in
trary uniform quantizers on these densities. It is easy to design a this correspondence. A common approximation to the mean-
sequence of uniform quantizers (indexed by N) such that square error of a uniform quantizer has been A2/ 12. Consider
"M -im .MSCe-O, IimN..A-O0 but lim,_.mse/(A2/l2)' vi . the class of density functions given by

Zador 161 shows that if Ax) is Riemnann-integrable and
E(X 2 5') < oc for some 6 >0 then for the optimal nonuniform+
quantizer ft)--( - 2xI) a 0 < -c 00a.

iN- me.111 1 3 l We easily see that 8 - Sup(ir: f x 2 +(x) dx < o). By straight-

where 11J11 is the L11, norm. This resuJt show that for the forward minimization techniques one can show for this clasts of
nonuniform quantizer the mean-square error decreases; like densities that2
I/N 2 for large N. Is there a similar property for the optimum me 2

*uniform quantizerP Not always. N-.0 2/12
Property 8: Suppose Atx) is Ritmann-integrable. Then for the Property 8 is of interest because it sets forth a basic difference

optimum uniform quantizer hiliv-. . m~se - (b - )'/ 12. between uniform and nonuniform quantizers. For the nonuni-
Proof: If b -acca then form quantizer we can expect the mean-square error to be of the

2 order of I/ N2. We can expect this rate of convergece to zero to
am e i (N -2) mse bold for the uniform quantizeronly if the probability density has

A'/w 412 V-w (N-2)i2/ 12 finite support. As an example consider the Gaussian case. The
Gaussian probability density is of infinite support yet has ex-

lim(N -2)'mse (2)tremely light tails. We may write down an expression for the
IimN2A2/12 mean-squitre error of a Gaussian random variable and solve for

bu ( -2)42-oo hih mpel lnt (N- irse2 o the optimum hi for a specific N. Let us set A-2eK/(N-2)
but N-242-oo hic imlie lili~N2)~e-cc. where K is a function of N and a is the standard deviation. We

If bi-a<oo then sm,._.mse/(1/2- I or limN.(N- find that,folarge N. Kisgiven bythe folowngtransendetal
* 2)'se - lim,,-.N~msc - (12)- - lim(N - 2)141 - (b - a)2/ 12eqain

which completes the proof. Kqain

Distruarion2 T_)I* K
We should note that not everyone uses our definition of the N- 6-2

optimum uniform quanuzer. For example. Pearlman and Senge
171 have published tables of the optimal uniform Rayleigh quan- K
tizer. For their computations they add the constraints a - 0 and eK2 _+3N-)q - 4/2.J
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S "This cquation may be m)lved on a computer by a standard
Newton- Raphson search. In Fig. I plot K as a function of N for

r. value, of N from 10 to 100000. The dotted line is put in as a
reference and is given by D(N)- 1.71ln36N/ir. It can be shown
that limNv.D(N)/K< oo. We conclude that the mean-square
error in a uniform Gausian quantizer is of the same or larger
order than (In N)/N 2 .

APPENDIX

Consider a sequence of quantizers ( ZN(X)),. o* where N is the
number of output levels, AN is the step size, and N is the
nontruncation region of gN(x). The measure of N is (N-2)AN.
Suppose the input probability density function f(x) is Riemann-
integrable, and denote the support of f(x) by supp f. Define
MSeN - E((X-SN(X))

2
).

Lemma 1: Suppose Iv-,supp f as N-,oo (i.e.. if xE suppf
then there exists an No such that xE In for n >NO) and
lhmN.4,-0. Then timN . mseN/(A/12) > I. Furthermore if
supp f C 1N for all N and limN-..AN -- 0 then
iimv.mseN/(A2/l2)- I.

Proof: Define

M, supf(x)
C:(q+ON 9+..,(, + I)AN)

M,- inff(x)
s (q+eA..q+(e+ I)A.)

Then

+(., + ,A,, -(q+(i + .)A,)) dx < m ,

and

roseN< N MW q+O#14.x-(q+(i+ j' )aNI))dx+TF,
x 0 q+.

when€ I |'N is the trunacation error. "bus

AA N-3

-',-0 < A msenp. - , MN -TEN,.

If /,v-supp f as N-.oo and liml,..A,-0 then, since (x) is
Riemann-integrable, limra . Vv-miN..-al. which proves the
first part of the lemma. If suppf C 1, for every N then TEN -0
for every N, and since hmNAN -0 and Ax) is Rjemann-inte-
grable, again 2EM,AN I. which proves the second part of
the lemma. 0
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SOME MODIFICATIONS TO THE MEDIAN FILTER PROCESS AND THEIR PROPERTIESt

T. A. NODES AND N. C. GALLAGHER, JR.
School of Electrical Engineering
Purdue University

O W. Lafayette, IN 47907

ABSTRACT

Some modifications of the median filter are given and their properties
are derived. In addition, some results for standard median filters are
given. It is shown that for non median nth ranked-order operations, re-
peated application of the operation will reduce any signal to a constant.
Also, it is proved that the output of a recursive median filter is in-
varient to subsequence passes by the same filter.

I. INTRODUCTION

Median filtering, a method of signal processing which is easily imple-
mented on a digital computer, has been used with success in many applica-
tions. These applications include picture processing and speech process-

ing 1,2 ,3 "4  where it is employed to smooth the signal. Further potentially
useful properties can be obtained from slight modifications of the median
process. We have investigated several such modifications and present the
properties of two of them. In section I, we Look at the nth ranked-order
operation, which is a generalization of the median process. In section
III, we study the recursive median operation, which incorporates previous
output values into the median decision process. Finally, in section IV we
introduce some other possible modifications to median filters. First, how-
ever, a review of the standard median filter is in order.

Median filtering is a discrete time process in which a 2N+1 points wide
window is stepped across an input signal (see Fig. 1). At each step, the
points inside the window are ranked according to their values, and the
median value (mid-point) of the ranked set is taken as the output value of
the filter for each window position. At both ends of the signal, N end
points are appended to allow the filter to reach the edges of the signal.

L point input signalx(.)

N appended Window at N appended
end points a--position A --p end points

0 •6, . i
(200+ points

1 2 A-N A A-N L- IL
The output of the median filter, Y(A) is given by

Y(A) a the median value of {x(A-N).... x(A-I),x(A),x(A+l),...,x(A+N)}

Figure I: The Medlan Filter

tThe authors gratefully acknowledge the support of the Air Force Office of
Scientific Research under Grant AFOSR 78-3605.

P, ented at the ighteenth Annuol A.teAton Cone4tce on Comm.wcntion,6,
Con.tw and Computing, OctobeA 8- 10, 1980.



N- 3, 2, 1
1 1 1 0e • ,•

1111 1 , am , ma • • Input signal, x('),

* * * * * *Output signal, y,(-).
* * * * * , for a window size of 3 (N-1)

• * . * . Output signal, y2 ),
I i i i I I I I I m i for a window size of 5 (N-2)

0 * * * • * Output signal, NOSm I s ! I i for a window size of 7 (N-3)

* * .g * 000 Output signal, y ()
i i I Ii mI l 2nd pass

for a window size of 7 (N-3)

Figure 2: Effects of window size on a median filtered signal

The value of the front endpoints is equal to the value of the first point
of the signal, and the value of the rear endpoints is equal to Last point
of the signal. As an example of this process, consider Fig. 2. Here, a
binary signal of Length eleven (the m's represent the appended endpoints)
is median filtered by three different window widths N a1 (2N+1=3), N = 2
(2N+1=5), and N = 3 (2N+1=7). Notice, for the N=1 case, the signal is un-
perturbed, while for the N=2 and Nr3 cases, the amount of structure in the
signal is reduced. A number of signal structures which can be used to de-
fine the properties of median filters, can now be defined.

A constant neighborhood is a region of at Least N+1 consecutive points
all of which are identically valued.

An edge is a monotonically rising or falling set of points surrounded
on both sides by constant neighborhoods.

An impulse is a set of N or Less points whose values are different
from the surrounding regions and whose surrounding regions are
identically valued constant neighborhoods.

A root is a signal which is not modified by filtering.

GaLLagher and Wise 5 have shown that, while impulses are eliminated by
median filtering, constant neighborhoods and edges are unperturbed, and in
fact, only signals composed solely of constant neighborhoods and edges are
roots to the median filter. Again referring to Fig. 2, note that the sig-
nal is a root of the N=1 median filter but not for filters with N greater
than one. However, after one pass of the N=2 filter or two passes of the
N=3 filter the resulting outputs are roots of their respective filters. In
fact, GaLlagher and Wise have also proven that any signal of Length L is

1.
reduced to its root after at most -T(L-2) successive passes by any median

filter. Furthermore, any root of a median filter with a particular window

size is also a root of any median filter with a smaller window size.



II. Nth RANKED-ORDER OPERATIONS
If instead of the median valued point the value of the nth Largest point

in the filter window is passed to the output at each step, then a general
set of operations, called nth ranked-order operations, is found. More for-
mally, the output of the nth ranked-order operation at position A is

Y(A) = the nth Largest value of {x(A-N), ....,x(A-1),x(A),x(A+1),...,x(A+N)}

This set of operations includes the median filter case, n=N+l, and many of
the properties for all values of n are similar to the properties of the
median filter. The non-median nth ranked-order operations have potential
applications in areas such as peak detection with impulse rejection and di-
gital A.M. detection (see Fig. 3).

The nth ranked-order operation can also be defined by the decision rule
used to select the output value at each step. For 2N+1 points inside the
window, the nth ranked point, x(a), is the point such that there are at
least n points with values less than or equal to x(a) and at least
2N+1-(n-1)=2N+2-n points with values greater than or equal to x(a). A num-
ber of properties of the nth ranked-order operation can now be developed.

Property 1: A point, X(t), is unchanged (y(t) = x(t)) by an nth ranked-
order operation if two conditions are met. The point, x(t), is located in
a constant region, and x(t)'s position is restricted to b+N-
a < t < c-(IN+l-nl+a] where a is any nonnegative integer of value Less than
N+T-IN+1-n and b and c are the positions of the two endpoints of the con-
stant region

Proof:
Assume that the two conditions given above are met. Now, Let a =

0. The constant region must now extend to at Least N points Left (de-
creasing t) of x(t) and IN+1-nI points right of x(t) for a total of at
Least 1+N+IN+l+nl points of value x(t) inside the window. Further-
more, if a 0 0, then the constant region will extend 'a' fewer points
to the Left of x(t) but 'a' more points to the right, thus, mair*ain-
ing a total of at Least N+1+IN+1+nl constant valued points inside he
window. This means that if N+1 > n then at Least
1+N+IN+l-nf S 2N+2-n (>n) points inside the window have values equal

/ detected / detected

s nal 

signal

AM signal AM signal

(a) (b)

Figure 3: A.M. Detection of a 5KHz tone on a 31K z carrier and sampled
at 250KHz using an 8th ranked-order operation with a window
size of 9

(a) original signal (b) signal corrupted with impulse noise



to x(t). Thus, x(t) meets the decision rule, and y(t) = x(t). Like-
wise, if N+I < n, then I+N+IN+I-ni = n( 2N+2-n), and again y(t)
x(t).

Property 2: A rising impulse like signal of width Less than 2N+2-n points
or a falling impulse Like signal of width Less than n points will be elim-
inated.

Proof:
i) if a rising impulse has fewer than 2N+2-n points, then no point

of the impulse can ever meet the second decision criterion. Thus, no
output points will have values equal to the value of the impulse.

ii) Likewise, if a falling impulse has fewer than n points, then
no point of the impulse can ever meet the first decision criterion,
and no output points will have values equal to the value of the im-
pulse.

The definitions previously given for the median case may now be general-
ized for all the nth ranked-order cases.

A constant neighborhood is a region of at Least N+1+IN+l-nl consecu-
tive points alL of which are identically valued.

An impulse is a set of points whose values are different from the sur-
rounding regions and whose surrounding regions are identically
valued constant neighborhoods. If the values of this set of
points are greater than the surrounding neighborhoods, then the
impuLse contains Less than 2N+2-n points, and if the values of
the impulse are Less than the surrounding regions, then the im-
pulse contains Less than n points.

The definitions for the edge and the root are unchanged. Note that,
property 2 can be restated as "impulses are eliminated by nth order opera-
tions". Using these definitions, further properties can be developed. Due
to Lack of space, however, many of these properties are presented without
proof.

Property 3: Upon each pass of an nth ranked-order operation, every edge of
a signal will be moved to the Left (advanced) by

sgn~edge3*(n-N-1) points

(+1 if x(t) < x(t+l) For t ranging over all
rwhere sgnedgeJ = -1 if x(t) > x(t+1) positions in the edge

Property 4:

Any constant region of 2N+2-n or more points surrounded by constant
neighborhoods of Lesser values will be changed in width by 2"(n-N-1) points
after being passed through an nth ranked-order operator.

Any constant region of n or more points surrounded by constant neighbor-
hoods of greater values will after being operated on be changed in width by
20(N+l-n) points.

As can be seen from the above properties, for n greater than N+ the
maximum valued signal segment (or the minimum if n is Less than NI) which
is not an impulse tends to expand its coverage with each pass of a non-
median operator. Thus, under repeated operations, a signal tends to be re-
duced to a constant. That this is true for any signal is shown in the fol-
Lowing properties.
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Property 1: OnLy constant signals are invariant to nth ranked-order opera-
tions if n is not equal to N+il.

Property 6: If n is not equal to N+Il, then repeated passes of an nth
ranked-order process will reduce any finite Length signal to a constant.

( -The output of an nth ranked-order operation at position Z is not influ-
enced by input points more than N points ahead (>Z+N) or N points behind
(<Z-N) Z. This suggests a method by which Long signals could be segmented
and the ranked-order operations on each segment carried out in parallel.

i) Append the start and stop points as usual
ii) Divide the signal into overlapping segments. Each overlap is

2N+1 elements wide.
iii) Perform the normal nth ranked-order operation independently on

each segement.
iv) After each operation replace the Last N points of each segment

(except the Last segment) with the N+2 through the 2N+l points of
the following segment. ALso, replace the first N element of each
signal segment (except the first segment) with the elements from
the 2N+l through N+2 positions preceding the end of the prior
signal segment.

Now, the signal is the same as it would be had the processing been done be-
fore the segmentation. Thus, further processing can now be done, or the
segments can be recombined to form the final output signal.

A signal may be formed from independent identically distributed, iid,
sample points of a random process. Such a signal would be formed if white
noise were sampled to form the input signal. For this type of signal,

results from order statistics 6 may be used to obtain the first order dis-
tribution, Fy (), and the density, fy (), of the output of an nth ranked-

order operation. If the distribution, F x '), and the density, fx (), of

the input are known, then f y(') and Fy () are given by

fy(x)= (n1,2+-(2N+1)! [F n-1(x)(,_Fx(X) (2N+l-n) fx) property #7y~~ ~ ~ (n1)M!yN~ n

2N+1 (2N+1)! 1
F y() = E K!(2N+1_K)! F (x) (1-F Cx))2NI -K property #8

K=n

where 2N+1 is the window size.

KuhLman and Wise7 wiLL present further statistical analysis of the medi-
4 an filtering of independent identicaLLy distributed random processes in the

next paper. However, the above formulas can immediately be used to prove
that the statisticaL median of an iid process is preserved under standard
median filtering.

Property 9: A median filter, x(.) , y('); with an input of iid sample
4 points will transform the distribution of the input, F (o) * F (.), sym-x y

metrically about 0.5. That is, for any L such that F (L) M F (M), then
x y

(1-F (L)) * (1-F ()).
x y

Property 10: The statistical median of a signal of iid sample points is

preserved upon median filtering, or given L such that F x(L) = 0.5, then

F (L) = 0.5.
y

ALso recall that if the density of the input, f x(), is symmetric, then the

'!K



mean, Ex{ }, and the median are equal. Therefore, by properties 9 and 10,

the mean of an iid sample point signal whose density is symmetric is also
preserved under median filtering. However, in general, the actual median
point and the average of a particular signal will not be preserved.

Recursive Operations
Now consider replacing, at every step, the leftmost N points in the mov-

ing window with the previous N output points, and apply the same decision
rule as was previously given for the nth ranked-order operation to obtain
the next output value. This produces a recursive nth ranked-order opera-
tion which can be more formally stated as follows.

Y(A) = the nth largest value of {Y(A-N),...,Y(A-1),X(A),X(A+I),...,X(A+N)}

Where X(A) and Y(A) are the values of the input and the output respectively
at position A. The properties of these operations are similar to those of
standard nth ranked-order operations. Most notably, they have the same set

q of roots.

Property 11: A signal is invariant to recursive filtering if and only if it
is invariant to standard filtering.

Proof:
If a signal is invariant to an operation, X(e) - Y(O), then X(k) =

Y(K) for all k. Therefore, if a signal is invariant, then standard
and recursive operations use the same points in the decision rule, and
they must produce the same resulting signal.

However, the same signal will not in general reduce to the same root under
recursive and standard operations. This is illustrated by an example for
the median (n=N+l) filter case in Fig. 4. One may notice that under noisy
conditions, the recursive filter tends to maintain a higher correlation
between points in its output than does its non-recursive counterpart. This
is further illustrated in figure 5 which compares the autocorrelation of
the output for recursive and standard median filters with independant uni-
formly 10,13 distributed input points. These autocorreLation functions
were obtained experimentally from a sequence of 2,200 random points. Thus,
these filters may be useful in cases where more stringent filtering without
a wider window is required.

One of the most interesting characteristics of the recursive operations

S•Input signal
Sn m m l i LII I I I 3

* 0 0 0 5 Output 1st pass
* 0 0 0 * . 0 6 * m m Standard Median Filter

* * * * * * * * Output 2nd pass (root)
* i , a a a , a a , m t i I I , Standard Median Filter

* * 0 0 5 * * 0 0 0 * * * * Output Ist pass (root)
I , a i I I ni J I I I I ~Recursive Median Filter

Figure 4: Recursive vs Standard Median filters with a window width of 5
(N-2)
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Figure 5: Autocorrelation function of standard and recursive
median filters for a window width of five.

is that the root of a signal for a particular recursive process can always
be found after the first pass of the operation. Recursive ranked-order
operations are therefore potentially useful in areas, such as peak detec-
tion and coding operations, which require finding the root of a signal
quickly. The following two properties prove this characteristic.

Property 12: Any signal will be reduced to a root after one pass of a re-
cursive median filter (n=N+1).

Property 13: If n*N+l, then the last computed output value of a signal be-
ing operated on by a recursive nth ranked-order operation is the value of
the signal root for that operator. For n > N+1 (n < N+1) this value is the
value of the maximum (minimum) value to survive the first filter pass.

Other Functions
4 In addition to the above mentioned operations, many more variations of

the median filter exist. Many of these other variations also have proper-
ties which may be useful in signaL processing. We have studied several
such modifications and present some of them here. Many of these modifica-
tions were obtained by defining a set of signal roots with certain desir-
able characteristics; then, we developed an operation which would have a:
many members of this set as possible for its own roots. Unfortunately, we
have not, as yet, found a systematic method of determining an operation
which will have any particular set of roots. Nevertheless, this approach
does appear to hold promise.
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Figure 6: Example of a linear-median filter using a differentiator,
integrator pair and a median filter with a window width of
3 (N-i)

One modification to the median filter, which Tukey C13 and Rabiner (23
have already utilized with promising results, is that of combining Linear
and median operations together. This allows one to greatly extend the num-
ber of available effects by utilizing some of the many Linear operators
whose properties are already well known. As an example of such an opera-
tion, consider figure 6. Here, a signal is differentiated, median fil-
tered, and finally integrated. This operation has many of the same proper-
ties as a median filter alone. However, due to the differentiation, any
slope of extent Less than N+1 points will be seen by the median filter as
an impulse and, thus, eliminated. Therefore, roots of this operation can-
not contain sharp edges.

Another method of varying the median filter is to weight some positions
of the window more heavily than others. This could be done by duplicating
certain positions of the window. If the center position, for example, were
to be weighted by three, then the output at position A would be given by

Y(A) = the median value of (X(A-N),...,X(A),X(A),X(A),...,X(A+N)}

Yet, another modification would be to allow the value of a given position
of the window to be a Linear function of the points (possibly all of them)
inside the window. Thus, the output at position A would be

Y(A) = the median value of if1(X(A-N),...,X(A+N)),...,f0(X(A-N),...,X(A+N)}}

where m is the number of values used in the decision process. A simple ex-
ample combining the previous two modifications is given in figure 7. In
this example, the points inside the window are first scaled by either -1,
0, or +1; then, the center position is weighted by three, and the median
operation is carried out. The roots of this operation are zero or those
segments of periodicity 4 (X(i) = X(i ± 4)) which are symmetric about
zero. Thus, with some modifications, medi.n type filters can be designed
for a wide range of different roots, including some periodic type signals.

Conclusion
In this paper, we have examined severaL variants of the median filter.

We have found that the set of nth ranked-order operations is a generaLiza-
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Figure 7: Median filtering with a modified window function

tion of the median filter', and that they alL have many similar characteris-
tics. However, the non-median operators wilL, after repeated passes,
reduce any signal to a constant. In contrast, the recursive median process
retains the same set of roots as a standard median filter, though the same
signal may not reduce to the same root under both operations. However, the
recursive median filter reduces any signal to a root in just one pass, and
thus, may be useful where high speed root determination is required. We
have also reviewed some examples of other types of modified median opera-
tions, including combined Linear, median functions and fiLters with modi-
fied windows.
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THE DESIGN OF MULTIDIMENSIONAL QUANTIZERS USING PREQUANTIZATION

Kerry D. Rines and Neat C. Galtagher, Jr.
School of ELectrical Engineering
Purdue University

- West Lafayette, Indiana 47907

ABSTRACT

A novel approach to the design of multidimensional quantizers is
presented. This technique is used to design optimum uniform multidimen-
sionaL quantizers that can be operated in real time. The quantizers are
easily implemented using zero memory nonlinearities, Linear transforma-
tions and univariate uniform step size quantizers.

I. INTRODUCTION

There is considerable interest in the use of multidimensional quantiz-
ers for the encoding of analog sources. Much of this interest has been
generated from a theoretical standpoint. The muLtivariate quantization
results of Zador [13 point to the advantages of multidimensional quantiz-
ers over univariate quantizers at high bit rates. Simply stated, the
results indicate that the optimum per sample distortion decreases as the
dimension of the quantizer increases. Therefore the potential exists to
improve the performance of digital encoders by replacing univariate quan-
tizers with multidimensional quantizers.

Recently the design of optimum multidimensional quantizers has been
addressed. Computer algorithms for designing optimum quantizers of two
or more dimensions have been presented by many authors, such as Linde et
at 123. The optimum quantizers are implemented using a search procedure
to choose, from a specified output set, the output that is the smalLest
distance from the input. This implementation of the optimum quantizer
may be difficult or impossible to operate in real time at high bit rates.
In contrast the univariate uniform step size quantizer is a zero memory
device that can be operated in real time. To date the easy implementa-
tion and real time operation of the univariate uniform step size quantiz-
er has outweighed the theoretical advantages of using multidimensional
quantizers in the design of digital encoders.

In this paper we present a novel approach to the design of multidimen-
sional quantizers called prequantization. The design is illustrated in
Figure 1 where a zero memory nonlinearity called a prequantizer precedes
a specified multidimensional quantizer.

iEZ MULTIDIMENSIONAL

EQUANTIZER

Figure 1. MuLtidimensional Quantizer Design using Prequantization.

P'~~tea .d a~t the Eighteentli Ainug Atte..'ton Coezdeenmee on CoWVXAV.catioV6,
Contkot and Computing, OetvbeA 8-10,1980.



This design is similar in some respects to the companding design of
nonuniform univariate quantizers first proposed by Bennett 133. In the
univariate case a nonuniform quantizer may be difficult to implement
directly. However, with companding we can design a nonuniform quantiz-
er using a uniform step size quantizer, an .ivertible nonlinearity and
the inverse nonlinearity. Similarly, prequantization can be used to
design many multidimensional quantizers. Prequantization enables us to
design these quantizers using a simple multidimensional quantizer, which
is easy to implement and operate in real time, along with a zero memory
nonlinearity. We illustrate the usefulness of prequantization with three
examples.

In a recent paper Gersho C43 considers the partitioning of optimum un-
iform multidimensional quantizers. He states that the optimum uniform
two-dimensional quantizer is the hexagonal quantizer. In three dimen-
sions, Gersho argues that the truncated octahedral quantizer is very
likely to be the optimum uniform three-dimensional quantizer. The analog
of the truncated octahedron is considered for four dimensions. The
resulting quantizer is not known to be optimal for four dimensions, but
does have a Lower per sample distortion than the three dimensional trun-
cated octahedral quantizer. In this paper we present the designs for
these three quantizers using prequantization. In each case the design is
easy to implement and the quantizer can operate in real time. The real
time operation of these quantizers for high bit rates is a significint
result and demonstrates the important practical applications for pre-
quantization. We begin in section II with a discussion of the prequanti-
zation design procedure.

II. PREQUANTIZATION

The design of k-dimensional 4uantizers using prequantization is illus-
trated in Figure 1. The design consists of a nonlinearity called a pre-
quantizer preceding a specified k-dimensional quantizer. The implementa-
tion of this design approach takes place in two steps. First a k-
dimensional quantizer meeting a specified criterion is chosen. In this
paper we are interested in real time operation, therefore we specify that
the quantizer be able to operate in real time. Examining Figure 1, we
require that the real time (specified) quantizer have the same set of
output values as the quantizer we wish to design. This is the only con-
straint placed on the choice of the real time quantizer. Free to choose
from all quantizers satisfying the output constraint, we choose a real
time quantizer that is easy to implement. The ability to exercise some
control over the choice of the k-dimensional quantizer is one of the ad-
vantages of this design procedure.

The second step in the implementation is the design of the prequantiz-
er. The role of the prequantizer is to complete the mapping of the input
variables into the desired output values. The real time k-dimensional
quantizer can be characterized by the mapping of its input space into its
output values. This mapping is usually described by a partitioning of
the input space, where all the input vectors contained within one parti-
tion are mapped into the same output vector. Since the real time quan-
tizer is chosen based only on its output values, we do not expect its
partitioning to be the same as the partitioning of the quantizer being
designed. It is the prequantizer which is used to obtain the partition-
ing specified by the desired quantizer design. The prequantizing func-
tion maps a partition specified by the quantizer being desi2ned into a
partition of the real time quantizer that corresponds to the specified
output. Once the prequanti~ing function is determined the k-dimensional

-2-



quantizer design is complete. We illustrate the design procedure with a
simple example.

Consider the design of a univariate quantizer with input x and output
R as described in (1).

n & ; n< n A+ A. (1)

Using the prequantization procedure, we first choose a quantizer that is
easy to implement and has the same output set as given in (1). We choose
the uniform step size quantizer given by

=n A ; n A- < y < n A +. (2)

We now determine the prequantizing function that must precede the quan-

tizer in (2) to complete the design. Observe that quantizing y = x -A

in (2) is identical to quantizing x in (1). Thus the prequantizing func-

tion is simply f(x) = x - I and the design of the quantizer in (1) is

complete.

III. HEXAGONAL QUANTIZATION

Gersho has argued that the optimum uniform two-dimensional quantizer
is the hexagonal quantizer. The design of a hexagonal quantizer using
prequantizing is given here. First we attempt to find a two-dimensional
quantizer that can be easily implemented and has the same set of output
values as the hexagonal quantizer. One quantizer meeting these require-
ments is a scaled version of the diamond quantizer given below.

Let the inputs to the two-dimensional quantizer be x and y. The vari-
ables x and y are first encoded into two new variables w and z by the
Linear transformation,

w =x + Vs/ y
(3)

z x - ''y.

The variables w and z are quantized separately by univarlate quantizers
with a uniform step size A. The outputs of the two-dimensional quantizer
are then obtained using the Linear transformation,

ft - (Q * 1)

1( -(4)

The position of this quantizer in the hexagonal quantizer design is shown
in Figure 2 and the partitioning of the scaled diamond quantizer is given
in Figure 3. Having chosen the two-dimensional quantizer given in (3)
and (4) we now turn to the design of the prequantizer.

The prequantizer must map the hexagonal region corresponding to each
output into the scaled diamond shaped region corresponding to that same
output. Consider the hexagonal partitioning shown in Figure 4.

- 3-
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Figure 2. Prequantization design for the hexagonal quantizer.
The quantizer Q has uniform step-size A.

y

x

Figure 3. Partitioning of the scaled diamond quantizer.

Assume x is fixed and the pair (x,y) is contained within a given hexago-
nal partition. We now pose the question, does there exist a value x'
such that the pair (x',y) is contained within the corresponding diamond
partition for all values of y? This approach is illustrated with the
following example. Let x = x, as shown in Figure 3 and let y be in the

A A
range -- to- . In Figure 4 we observe that the hexagonal quan-

2V'3  2 %I'
tizer output will be (0,0) for all input pairs in the set
((xl"y) : Y1 < y 1 Y2) " Similarly in Figure 3 we observe that the scaled

diamond quantizer output will be (0,0) for all input pairs in the set
((x2" y) : Yl ( y 5 Y2 } "  Therefore if x2 = f(xl), the quantizer in Fig-

ure 2 will behave Like the hexagonal quantizer for all input pairs in the

set ((xl,y) : < y < A}. In fact, we can show that the quantizer

-2 2



x
2 22

Figure 4. Partitioning of the hexagonal quantizer.

in Figure 2 behaves Like the hexagonal quantizer for aLL inputs in the
set {(xl,y) : - < ( y < -} when x2 = f(xl). Repeating this exampLe for

aLL possibLe vaLues of xl, we obtain a prequantizing function that maps

the hexagonaL region corresponding to each output into the scaled diamond
shaped region corresponding to that same output. The prequantizing func-
tion is given in (5).

- 3x - 2n+1) .L;n + 1< x < (n+1) -

IV. RESULTS IN HIGHER DIMENSIONS

in this section we present the design of the optimum (or near optimum)

uniform quantizers for three and four dimensions. Each of these quantiz-
ers use in their designs a two-dimensional quantizer termed the diamond
quantizer. The algorithm for the diamond quantizer is as follows. Let
the inputs to the two-dimensional quantizer be x and y. The variables x
and y are first encoded into two new variables w and z by the Linear
transformation,

w x - Y. 
(6)

The variables w and z are quantized separately by univariate quantizers
with a uniform step size A. The outputs of the diamond quantizer are
then obtained from a linear transformation of the quantized variables 0
and I given by

-5-



I+

(7)

The outputs I and 9 wiLL be multiples of for aLl possible inputs. A

useful property of the diamond quantizer is that if either input x or y

is a muLtipLe of 'A, its quantized value R or 9 wiLL be that same muLtiple

of .. Therefore if the output of one diamond quantizer I is used as the

input to a second diamond quantizer, the output of the second diamond
quantizer wiLL aLso be 2. Using this property we are abLe to design
quantizers of higher dimensions by cascading diamond quantizers. The
results of these designs are now given.

Gersho states that the truncated octahedral quantizer is very Likely
the optimum three dimensional quantizer. This quantizer is defined by a
tessellation of a truncated octahedron specified by the set
((xlX 2,X3) : 1Xl+1x21+1x 31 < ; Ixil < , i=1,2,3 ). The design of

this quantizer is given in Figure 5.

Ii

x3 QD

X3---- o 3

Figure 5. The truncated octahedraL quantizer design using
prequantization. QD is the diamond quantizer.

The prequantizing function is given in (8) where e = lx31 mod(O, ). For

e < C 8

f(x lx 3) n 7 n 7 Z + e 1-i + 8A

- +- e ; n + e < x, (n+l)

= xI  - e ; (n- i) <( xl < n - + e ,

A similar result is obtained for A < e <a

The four dimensional analog of the truncated octahedral quantizer is
defined by the tessellation of the polytope specified by the set((x lx2,x3,x4) : xll+lx21+lx31+lx~l < 2,& ; Ixil Spi=-1,2,3,4). For

convenience we wiLL call this quantizer the 4-d uniform quantizer. The
design of the 4-d uniform quantizer is shown in Figure 6.

- 6-
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Figure 6. The 4-d uniform quantizer using prequantization.
QD is the diamond quantizer.

The prequantizing function is given in (9) where z = Ix31 mod(0,) ,

w= Jx4J mod(O ) and e = z+w. For e < A

n; (n-) e < x1  (n+l) (9)

f(xlx 31x4) = n (9

- x1  + ; (nil) e < (nil) A.

-x I  - • , (n-I) < x, < (n-) f+ e.

A similar result is obtained for < e < A.

A comparison of the normalized mean-squared error performance of the
uniform univariate and multidimensional quantizers is given in Table 1.
The results were obtained by computer simulation using 30,000 samples un-

iformly distributed C- ,-). The output alphabet of each quantizer was

assigned one hundred quantization Levels per input sample.

Dimension Quantizer nmse (xlO 5)

I uniform step-size 9.99
2 hexagonal 9.66
3 truncated octahedral 9.48
4 4-d uniform 9.17

V. DISCUSSION

In this paper we have presented a new approach to the design of mul-
tidimensional quantizers. The usefulness of the prequantization approach
has been demonstrated by the design of three optimum (or near optimum)
uniform multidimensional quantizers. In each example the quantizer can
be implemented using a zero memory nonlinearity, Linear transformations,
and univariate uniform step-size quantizers. As a result the computation
time of each quantizer is independent of the output alphabet size.
Therefore, these quantizers are both easy to Implement and are able to
operate in real time even at very high bit rates.

The prequantization design approach is also compatible with the design
of nonuniform multidimensional quantizers. In [43 Gersho generalizes the
companding technique for the design of nonuniform univariate quantizers

to the design of nonuniform multidimensional quantizers. BuckLew [53

shows that an optimum k-dimensional quantizer can be designed using an

-7-



.A - optimum uniform k-dimensional quantizer, which is preceded by a mul-
tivariate Invertible nonlinearity and followed by the inverse nonlineari-
ty. Therefore the nonlinear prequantizing function used in optimum uni-
form k-dimensional quantizers is compatible and may even be of an advan-
tage when the companding approach is applied to multidimensional quantiz-
ers.
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A novel approach for the computation of orthonormal
polynomial expansions

Gary L. Wise (1), Neal C. Gallagher (2)

ABSTRACT

In this paper we present a novel technique for the computation of orthonormal polynomial ex-
pansions. The proposed method is very straightforward; given a function to be expanded in a
polynomial series, we first use the FFT to compute a vector of Fourier coefficients. Then, using
a change of basis transformation, we go from the Fourier coefficients to the polynomial coef-
ficients. Convergence properties for this new approach are investigated.

1. INTRODUCTION where
1TH(x) exp (- ldx.

Two common ways of representing functions have hn = f T
been polynomial and trigonometric expansions. In
much of science and engineering the trigonometric We also assume that
Fourier expansion has dominated over the generalized T
Fourier series expansions in applications. One advan- I[ H(x)12 w(x) dx < 9o,
tage of the trigonometric series over the polynomial -T
series is ease of coefficient computation by use of the where w(x) is a nonnepative weight function integrable
fast-Fourier-transform (FFT) algorithm; compared to over [-T,TI. Let On(x) denote an nth order polynomial,
the FFT, coefficient computation for polynomial and assume that {On()}ft =0 is a set of polynomials
expansions can be cumbersome and time-consuming, that is orthonormal and complete in L2 1-T,Tj with
In this paper we derive a simple change-of-basis trans-
formation that maps a trigonometric series to a poly- respect to the weight function w(x). Therefore, we
nomial series, can express H(x) as
These transformations have enabled us to develop an cc
efficient algorithm for the computation of orthonor- H(x) = 0 an  (x),
mal polynomial expansions. The basic plan of these n =0

algorithms is to create a vector of Fourier coefficients where
by use of the FFT; this vector is then multiplied by a an =T K(x) 0(x) w(x) dx.
transformation matrix, resulting in a vector of poly- -T
nomial coefficients. This approach can offer a saving Define the truncated Fourier series as
in computation time over the standard integral formula
.jr computing these polynomial coefficients. Section HM(x) = E hm exp (- 'mr
2 contains the derivation of the elements of the trans- IIllg M T
formation matrix, and in section 3 a numerical example Notice that
is presented. I T it

an-LT M h I exp (-U)T n (x)w(x)dx

2. POLYNOMIAL EXPANSIONS T 2
i =1 LT H(x) -HM(X)] On,(x)w (x)dx[

Assume that H(x) is an L2 [-T,Ti function (where T
is finite), and therefore possesses a Fourier series ex- T T
pansion convergent in L2 1-T, T1. Thus we may write -C IH(x)- HM(X) 2 w(x)dx f1 ' .[(y)J2 w(y)dy.

ooini~ -"

H(x) % 2; hn exp (- ' )
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The integral with respect to y equals one by defini-
tion. Since the integral with respect to x is finite, we k = E~J 1)r2 3+ 1 )2 a + /+ 1

know that for any e > 0, there exists a K such that r (a + + 2)

JIH() _ HM(x)12 w(x) dx < C, and for n > 1 (2 , p. 169]

whr (~a, 0) -=2 n En nlii~ p (xl)nm(x+l)m
wher n () =2 m=O I In n-rn

E ={ x: w(x) > K), and

and therefore = 2aOlI nai n01

TJ[H(x) .. HM(x)1 2w(x)dx *z K LT ~xuM(X1d e kn (2ni.a-s-li-1)r'(n+ 1) 1(n +a-s-li-1)

The first term can be made arbitrarily sinAll by chaos- in this case the elements cmn of the transformation
igM sfiinllag.matrix C may be calculated using a method suggested

ihug w sicetlyat e by Yao and Thomas 151 (there is an error in equation
(32) in 15 1). Utilizing this method we obtain

00
an= 2 im cm (2) cmn 2 1rn 0 )

n = -0 mn inn'r)

where where
T . -a-0l-2

mn _T T nO) r) xi(t) = D(n, a.P) t Ma-P 2nsas-/l (2it),
and where the convergence is uniform in n. Con- 2' 25
sequently, (2) may be written as()

a = h C (3) Mr,s(t) is the Whittaker function [1, p. 2 64 ] given by

wvhere h is the row vector of Fourier series coefficients, M r(t) = e-t/2 t 2s+s- IF,(-! - r + s; 2s +s 1; t),
a is the row vector of polynomial coefficients, and C rs2
is the matrix whose mn-th element is cmn. and a + 1
After uniform sampling of the function H(x), we can I ~+~~++)
compute the vector of polynomial coefficients in the D(tis,a3 '(ia1Pp -31) 22 ai-132
following manner. In practice, a finite number of 2
elements for h Are computed by use of the FFT 2wV'/k r (n + 1) P (2n +a + 0 + 2) (i
algorithms. Then we perform the vector inultiplica.
tion indicated by (3). For example, h will be a 2M - 1 For a= P, we obtain the normalized Gegenbauer poly- av,
dimensional row vector, a will be an L dimiensional nomials, and in this case (5) becomes
row vector, and C will be a (2M + 1) x L matrix. *in - 2n +2 312
B~ecause all computations must be performed using _ ()Vr r (n +p/si) '(n +1+3/2)2 J/- .J+0+1/2(t)
only a finite number of terms, we are concerned with On(t)-
the convergence of the resulting coefficients a(2Ms 1) 27rN/kn r' (2ni- 2/3+2) r (n + 1) tP+i 1/2 (6
to the correct coefficients an given by (1). We see

Irm le iabovc derivation that this convergence is Sonme special classes of normalized Gegenbauer poly-
uniturin in ii, where we have neglected ahiASillg errors nomials are the normalized Legendre polynomials,

4associated with the FFT and machine computation both kinds of Chebyshev polynomials, and Tesseral
errors. In the remainder of this paper, it will be as. polynomials. Applications of the above method for
sumed that all computations are done with 2M +-I Legendre polynomials may be found in 131.
such simple points of H(x).
Notice that if we take T = I and

w~x)~ (1x~a~~s- )13,(4) 3. AN EXAMPLE

wher a>-l nd /> -, te reultng n~x)arethe In this section we present an example of the above
wher a -1 nd > -, te rsultng n~x)Arethe method using Chebyshev polynomials of the first kind.

normalized Jacobi polynomials given by Let T = 1 and let a = #3 = -1/2 in (4).

Pr (a, 0) X This results in 0n(x) being the normalized nth Chebyshev
II () -~---------- .polynomial of the first kind. The Chebyshev polynomials

%n of the first kind can be defined by
4where 14, p. 284. #3.191-11 Tn +l(x) = 2x Tn(x) -Tni-1Cx)

p' 0 (a,)(x)= TO T(x) = 1 (7)

T1 (x) = x.
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The resulting normalized polynomials are given by TABLE 2. Selected values for (a.1 with M 50, 75,
Sand 100; N = 8192.

00(x M 50 75 100 True
value

S (x). 1. A0 -3.17x -3 3.23x10- 3 -3.46x10 - 3  0

The elements of the transformation matrix are found a1  0.886 0.907 0.919 1
to be a2  0.997 0.997 0.997 1
Cmn- r (i)nJn (-mn1). a3 -0.113 -9.27x10 -2 -8.05x10 - 3  0

Therefore, we have that a4 -3.09 o10- 3  -3.15x10 - 3 -3.38x10 - 3  0

a n = - hm (i)n Jn( - m). a5 -0.111 -9.16x 10 - 2 -7.98x 10- 2  0
m= - h A4 9 -9.29x 10 - 3  6.22x 10- 3  1.42x 10- 2  0

we consider the special case where the functiui H(x)
is rcal valued. Using the relations
1 =h* 4. DISCUSSIONh-m = m

and We have proposed in this paper a novel approach for
- n J computing polynomial expansions from equally spaced

n mit) = (- 1)f Jm , samples. The computation involved in this procedure
we have falls into three categories :

oo (1)Compute the transformation matrix C; this com-
a0 = V2_r h0 + 21vir E RE (hm) J0 (mit) putation need be done once and the result stored

m=1 in computer memory. The same matrix C is usedan 2V/2r (-1)n / 2 G RE(hm)Jn(m), n even for the expansion of all functions;
m=1 n #0 (2)Given the function H(x) to be expanded into the

-1 polynomial series, compute the Fourier series expan-

2 0 sion of H(x) by use of the FFT. This provides a
an - 2 r2

- (-1) 2 IM(hm) Jn(mit), n odd. vector of Fourier coefficients;
=1 (8) (3) Finally, multiply this vector by the matrix C to

produce a vector of polynomial coefficients.
We now present an example of the computation of The major sources of computation error with this
the Chebyshev polynomial coefficients. The func. procedure are error in the FFT, and truncation error
tion H(x) is in matrix multiplication (finite - rather than infinite -

vectors and matrix); these errors can be reduced by
H(x) 0 1 (x) + 02(x) choosing larger values of N in the FFT and M in the matrix

multiplication. If great accuracy is required, then large
%/! (2x 2 + x- 1). values for M and N may be required.

In examining the computation time required to evaluate
polynomial coefficients we will ignore the computation

The Chebyshev coefficients are computed by use of of the transformation matrix C. If this matrix is recoin-
(8); selected coefficients an are found in tables I and puted each time a different function is expanded in
2 for the cases N = 4096 and N = 8192. respectively, polynomials, then the computation time for C must bewhere N is the number of equally spaced samples used considered. For our purposes, we assume that C is
in the FFT. stored in memory. The matrix multiplication requires
TABLE 1. Selected values for {anI with M - 50,75. 2M + 1 multiplications and 2M additions for each coef-

and 100; N = 4096. ficient; if L coefficients are computed, we then have a
total of L(2M + 1) multiplications. in many cases, the

M 50 75 100 True equations will simplify as in (8). The FFT routine for
value computation of the Fourier coefficients requires

(N/2) log2 (N) multiplications (for radix 2 FFT).
A0 -5.38 x 10- 3  -5.93x 10-3 -6.57- 10-3 0 As a comparison to the approach proposed herein, con-
'1 0.886 0.907 0.919 I sider the computations necessary to evaluate the in-

2 0.995 0.994 0.993 I tegral of (1). First, we partition the interval for numer-
icd evaluation of the integral. We then use a recursion3 -0.113 -9.27x 10-2 -8.05x 10-2 0 reltion such as that in (7) to generate values ofOn(x)

A4  -5.19x 10- 3  -5.76x 10- 3 -6.42x 1o-3 0 for the chosen partition points. Next a numerical

J5 -0.111 -9.17 ,x 10-2 -7.98 x 10-2 0 evaluation procedure such as the trapezoidal rule is
r49 -9.28X 10- 3  6.22 x 10- 3  1.42 x 10-2 0 used to evaluate the integral. If the error in the evalua-
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tion is not small enough, the procedure is repeated 5. ACKNOWLEDGEMENT
with a finer partitioning. It may be necessary to
iterate several times. This general computation pro- This research was supported by the Air Force Office
cedure is necessary for each coefficient; hence, if we of Scientific Research, Air Force Systems Command,
want a total of L coefficients, we must evaluate L USAF, under Grants AFOSR-76-3062, AFOSR-78-
integrals in this manner. The actual computer time 3605, and AFOSR-81-0047, and also by the National
taken in evaluating coefficients in this manner varies Science Foundation under Grant ENG-76-82426.
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One may argue advantages for either technique of with the programming.
coefficient computation; it is possible for direct in-
tegral evaluation to take less time than the FiF pro-
cedure provided a fortuitous partitioning is made; REFERENCES
however, we have found the FFT-matrix multiplica-
tion technique to be particularly simple and efficient. 1. ERDLYI A., MAGNUS W., OBERHETTINGER F. and
For comparison purposes consider the example of TRICOMI F. G. : Higher transcendental functions, vol. 1,

McGraw-Hill, New York. 1953.section 3. We evaluated the coefficients a0, .'0 , a2 , 3 2. ERDELYI A., MAGNUS W., OBERHETTINGER F. and
a4 , a5, and a4 9 using the trapezoidal rule and TRICOMI F. G. : Higher transcendental functions, vol. 2,
Simson's rule, where we took the interval to be McGraw-Hill, New York, 1953.
1-0.99999, 0.999991. In table 3 we used 601 points 3. GALLAGHER N. C.,WISE G. L. and ALLEN J. W. : A
and in table 4 we used 1201 points. Notice that since novel approach for the computation of Legendre polynomial
seven coefficients are being evaluated, these corre- expansions, IEEE Trans. Acoustics, Speech, and Signal
spond respectively to 4207 and 8407 samples, and Processing, ASSP-26 (1978), pp. 105-106.

tables 1 and 2 correspond respectively to 4096 and 4. GRADSHTEYN I. S. and RYZHIK I. W. : Table of integrals,
8192 samples. series, and products, Academic Press, New York, 1965.
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TABLE 3. Selected values for {an} using 601 samples. of Fourier transform pairs of some special functions, Proc.

3rd Ann. Allerton Conf. on Circuit and System Theory,
Monticello, IL, Oct. 1965, pp. 299-309.

Coef- Trapezoidal Simpson's True

ficient rule rule value

a0  0.177 0.282 0

al 1.23 1.40 1

a2  1.25 1.40 1

a3 0.230 0.399 0

a4  0.251 0.399 0

A5  0.231 0.399 0

a49  0.289 0.458 0

TABLE 4. Selected values for {an} using 1201 samples.

Coef- Trapezoidal Simpson's True
ficient rule rule value

a0  6.85 x 10 0.130 0

22 1.11 1.18 1
a2  1.10 1.18!

a3  0.112 0.183 0

a4  9.72 x 10-2 0.183 0

A5 0.112 0.184 0

A49 0.136 0.206 0
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Some Results on the Median Filtering
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Abstract

The first order distribution of the output of a median fitlter when

filtering a known signaL pLus additive white noise has been derived and
is presented along with some examples. In addition, two programs have
been written to aid in the design of median fitters for the additive

white impulse noise case and some of these results are tabulated.

I. Introduction

Median filtering, a method of signal processing which is easily im-
plemented on a digital computer, has been used with success in many ap-
plications. These applications include picture processing and speech

processing1 ,2,3' 4  where it is employed to smooth the signaL. Previous

work in developing the properties of the median fitlter has been Limited

to the filtering of deterministic5 and white noise8 (i.i.d.) signals.
Unfortunately, due to the nonlinearity of the median process, the
analysis of the important signal plus. additive noise case is not a
direct extension of these simpler cases. in this paper, we present some
results on the filtering of signals plus additive white noise. Specifi-

cally, we have derived the first order output distribution for an arbi-
trary given signal and noise distribution. This aLong with several ex-
ampLes is presented in the second part of the paper. In addition, we
present some results on the effects of additive impulse noise on median

filtered signals. First, however, a review of the standard median

filter is in order.

Median filtering is a discrete time process in which a 2N 1 points
wide window is stepped across an input signaL (see Fig. 1). At each
step, the points inside the window are ranked according to their values,

and the median value (mid-point) of the ranked set is taken as the out-
put value of the filter for each window position. At both ends of the
signal, N end points are appended to allow the filter to reach the edges

of the signal. The value of the front endpoints is equal to the value
of the first point of the signal, and the value of the rear endpoints is
equal to Last point of the signal. As an example of this process, con-
sider Fig. 2. Here, a binary signal of Length eleven (the Ws represent
the appended endpoints) is median filtered by three different window

widths N a 1 (2N+1=3), N a 2 (2N+1u5), and N a 3 (2N14). Notice, for
the Nal case, the signal is unperturbed, while for the N-2 and N=3
cases, the amount of structure in the signal is reduced. A number of
signal structures which can be used to define the properties of median
filters can now be defined.

tThe authors gratefully acknowledge the support of the Air Force Office
of Scientific Research under grant AFOSR 783605.

Pioe.ted aot the ELg ent Annualt A-teton CondeA, e on ConwtcAtiou,
Conviot and ComputUng, SeptembeA 30 - Oc~abet 2, 1951.



L point Input signalx(.)

N appended Window at N appended
end points sition A end points-- I (2N+! points) ;

1 2 A-N A A-N\ L-I L

The output of the median filter, Y(A) Is given by

Y(A) - the median value of {x(a-N),...,x(A-l),x(A),x(A+1),...,x(A+N)}

Fig.): The Median Filter

N- 3,2, 1
1 1 1 • * • * *

* n t a s p a a a , m a I , I i Input signal, x('),

* * * * * Output signal, yl('),

a , a , , , * ifor a window size of 3 (N-i)

* . so •• * Output signal, y2(',
i i I l I I I ' for awindow size of 5 (N.n2)

0**0 * * . . Output signal, y()

* ' I I I I i I t for a window size of 7 3 (N-3)

• • • •• • *.Output signal, y H'.
l Iit s Ii I 2nd pass

for a window size of 7 (N=3)

Fig.2: Effects of window size on a median filtered signal

A constant neighborhood is a region of at Least N+1 consecutive

points aLL of which are identicaLLy valued.

An edge is a monotonicaLLy rising or falling set of points sur-

rounded on both sides by constant neighborhoods.

An impuLse is a set of N or Less points whose values are different
from the surrounding regions and whose surrounding regions are
identicaLly valued constant neighborhoods.

A root is a signal which is not modified by filtering.

GaLLagher and Wise L5,63 have shown that, while impulses are eLim-
inated by median filtering, constant neighborhoods and edges are unper-



turbed, and in fact, only signals composed soLeLy of constant neighbor-
hoods and edges are roots to the median filter. Again referring to Fig.

2, note that the signaL is a root of the NaI median filter but not for
0F filters with N greater than one. However, after one pass of the N=Z

filter or two passes of the N=3 filter the resulting outputs are roots

of their respective fiLters. In fact, GaLLagher and Wise have also pro-

ven that any signal of Length L is reduced to its root after at most

1
i*(L-2) successive passes by any median filter. Furthermore, any root

of a median fitLter with a particular window size is aLso a root of any
median fiLter with a smaLLer window size.

For i.i.d. (white) random signals, KuLman and Wise
8 have derived the

second order statistics of the median filter. They further show that

for aLL the distributions which they have investigated, which include
most of the common ones, the median filter has a Low pass effect on the
signaL spectrum, and thus increases the correlation. In fact, this is

also often true with more general signals; however, due to the nonlinear
nature of the fiLter there are cases where the second moment bandwidth
of a signal is actuaLLy increased upon median filtering and thus the
correlation decreased. Thus, one must use some care in applying the Low

pass assumption to median filters.

II. Output Distribution

Section I reviewed much of the previous work on properties of median

filtered deterministic and i.i.d. signals. As stated earlier, the more
general case of fiLtering signals plus additive noise is much more dif-

ficuLt to analyze. In this section, the first order distribution of the

output of a median fitter with a known signal and additive white noise
input is given. This is used in program Dis to compute some statistics
of the output of the median filter several examples of which are given.

If the output of median filter at position m has a distribution of

Fy(q,m) and the input a distribution of F x (qi) a Fnoise (q - si) where

s= signal at position i, then the output distribution is

S I(f.m)= .l [1-F,(q.i)]x (F,(q.t)) + 1l F.(q.i)
Awl n=a.+k --1 1 -.. J A to--, (--

where

2.N + 1 a window width

(al,aZ,'".,ak) U (al,Z*.,ak) = 1,2,'",(2"N+1))

b f(a) + ... fCb) if a <b
M~) a"t~ f1) if a > b
i~if

This result comes about from combining aLL possible combinations of the

points inside the window such that at Least N O of them have values < q.
It is straightforward to extend this result to obtain the first order
output distribution for any arbitrary input (any arbitrary random pro-

cess) if the (2N*l)th order distribution is known at every position,

however, this result is somewhat cumbersome and is not presented here.



The above equation was incorporated into program Dis to compute the
vaLue of the first order median filter output distribution, F y(q,m), for

a signal plus white noise input. This is then used to numericalLy
evaLuate some of the statistical properties of the output at each posi-
tion m. SpecificaLLy, Dis computes the value of the mean, E (Y), the

standard deviation, cy, the mean square error, R.S.E. (a EC(y i - st) 2

and the absoLute error, A.E. (a E(1yj - sil)) at every position. These

terms may then be pLotted as in Fig. 4 through Fig. 7 or averaged over
the signal and tabulated as in Tables 1 and 2. These exampLes iLLus-
trate some of the effects of median filtering signaLs plus noise. Two
different distributions (impulsive and gaussian) both with the same two
noise power LeveLs are used in these exampLes. The impulse noise used
is doubLe sided symmetric with heights of 1 3 and probabilities

+ - 2
P" a P - 0.001 and 0.05 for noise powers of an a 0.018 and 0.90 respec-

tiveLy. Likewise, the gaussian noise powers are aLso a2 a 0.018 and
n

0.90. For comparison, results are also given for windowed averaging
filters.

First, consider a constant signaL. The resuLts from a constant sig-
naL indicate the effects that the noise distribution by itself has on
the filter output. The results for several such cases using averaging
and median filters are given in Table 1. It can be seen that the Aver-
age Filter does somewhat better than the median fiLter when filtering
gaussian noise. This is expected since for a set window width the Aver-
age FiLter is the optimum M.S.E. estimator in -his case. However, when
impulse noise is present the median filter reduces the output noise
power by orders of magnitude more than the Average filter. This is due
to the ability of the median filter to totaLly eliminate Low probability
high power impuLses which is not possible with Linear systems. In fact,
it can be shown that for a fixed window width the median filter is the
optimum MAP estimator in this case. in generaL, for constant signals
median filters have been found to out-perform averaging type filters

when the tails of the additive noise density are extensive9 compared to
the gaussian case. ALso certain types of general signals are particu-

Table 1: Mean square error of median and average filter outputs with
constant signal plus noise inputs. Window width-2N+l

Input Average Filter M4edlan Filter
Additive
Noise n-I n*3 nw5 n-I n-3 nU5

Impulse

2a. =0.018 6.OOOE-3 2.573E-3 1.637E-3 5.396E-5 6.285E-I0 8.2612E-15in

2
a. 2'0.90 3.000E-I 1.286E-1 8.182E-2 1.305E-1 3.484E-3 1.044E-4in

Gauss ian

2a. -0.018 6.OOOE-3 2.573E-3 1.637E-3 8.909E-3 4.610E-3 3.215E-3in

2a. 2-0.900 3.000E-I 1.286E-1 8.182E-2 4 .O46E-1 1.902E-I 1.243E-1in



LarLy suitable for median filtering irregardtess of the noise distribu-
tion.

d As pointed out earLier, many systems generate signaLs which are not

amenable to the generaL spectrum separation techniques that ease the
design of Linear fiLters. Often this is due to the presence of sharp
edges in an otherwise Low frequency signaL. Such structures tend to be
roots to median filters making the median fiLter a good alternative for
smoothing such signaLs. One such signal is used here to iLLustrate the
effects of median filtering these signaLs when additive white noise is
present. This signal ranges from -2 to 2 and consists of edges and con-
stant neighborhoods. Figures 3 through 6 pLot the fiLter output expect-
ed vaLue and standard deviation (EYi), E(Y1 Y + y and E{Y - y) at

i
each position as soLid Lines and the originaL uncorrupted signaL as a
dashed Line. For comparison, the results for a windowed average fiLter
are shown in Fig. 3. As with the median fitters, the window width a 2
N + 1.

As iLLustrated above, the median fiLter does an exceLLent job of eL-
iminating impulses (see aLso Table 3). However, with non-constant sig-
nat structures, other types of errors become prevaLent when impuLse
noise is present. Foremost among these is edge Jitter. This effect is
present even at Low noise LeveLs and is not reduced by using Larger win-
dows as iLLustrated in Fig. 4a and Fig. 5a. This effect witl be further

discussed in Section I1. Fig. 5 aLso shows the effects of fiLtering
with Larger windows. The final peak of the signeL is onLy five points
wide instead of the six (a N + 1) necessary to pass through an Nz5 medi-

an fitter unperturbed. Fig. 5 aLso iLLustrates another error form which
occurs when the width of a pLateau or vaLLey approaches N+1 points. One
or two impulses of the correct sign Located within such a plateau wiLt

cause the whoLe pLateau to drop to the cLosest point beLow it, which can
be a substantiaL change.

(a) (b)

Fig. 3: For output, y, of an averaging filter, with input signal plus
noise the E(y}(- ), the E(y) + oy(- ), the E(y) - y(-).

and the Input signal ( ---- ) are plotted for a) N- and PN-O.018
and b) N-3 and PN=O.90 where PN-input noise power and the window
width-2 N+I



(a) (b)

Fig. 4: For output, y, of a median filter with an input signal plus
Impulsive noise, the E(y)(- ), the E(y} + ay(--), the
E(y) - ay(-), and the input signal ( ---- ) are plotted for
a) N-3 and PN=O.Ol8(P+=P--O.OOl and Height(Imp.)a13) and b) N=3
and PN=O.90(P+=P-=O.05 and Height(Imp.)-t3) where PN=input noise
power and the window width-2N+1-7

(a) (b)

Fig. 5: For output, y, of a median filter with an Input signal plus
Impulsive noise, the E{y}(- ), the E(y) + oy(-), the
E(y) - oy(- ),and the input signal (-...) are plotted for
a) N=5 and PN=O.O|8(P+-P--O.OOI and Height(Imp.)-13) and b) N-S
and PN-O.90(P+=P-=O.05 and Height(Imp.)-!3) where PN-input noise
power and the window width-2,N+l-li

----------------



ConverseLy, when gaussian noise is present, quite different results
are obtained. As can be seen from Fig. 6, in this case the Std. Dev. of
the output is such more smooth and constant, than with impulse noise,

Sand the plots more cLoseLy resembLe the resuLts of the Average FitLter
much nore cLoseLy than before. This is further iLLustrated in Fig. 7
which pLots the density of the output of the Nz3 median filter at posi-
tion 34 (as reviewed in Fig. 6). Notice that white it is shifted and
the Std. Dev. reduced, it is stiLL fairly smooth, symmetrical, and beLL
shaped (although the taiLs do exhibit some assymmetry which is unobserv-

(a) (b)

* S
* S

Fig. 6: For output, y, of a median filter with an Input signal plus
gaussian noise, the Ey)(- ), the Ely) + ay(- ), the
E{y) - oy(- ), and the input signal (-...) are plotted for
a) N-3 and PN=O.018 and b) N-5 and PN=0.90 where PN-input noise
power and the window width-2.N+l-l

6.0

4

3.0

1.5 2.0 2.5

Fig. 7: The output density (upper curve) of an N-3 median filter with an
Input of signal plus gaussian noise (density: lower curve) with
PN-O.018 at position 34 (see Fig. 6)

,I



able in Fig. 7). This is due to the fact that gaussian noise perturbs
almost aLL the input points by a smaLL amount rather than just a few by
a Large amount as is the case with impulse noise. However, the median

- filter tracks the signaL more cLosely than the Average filter does. A
summary of the average M.S.E.s for the above filter is given in TabLe 2.

Table 2: Average mean square error, .T.E., of filter output filtering a
100 point signal and additive noise (see Fig. 3 through Fig. 7)

Input Average Flit. Median Flit.
Additive

Noise n-I n-3 n-3 n=S

Impulse

02-0.018 1.125E-I 2.514E-1 3.202E-3 5.590E-2
2
a -0.90 4.043E-1 3.774E-1 1.502E-1 2.640E-I

Gaussian

a2-0.018 1.125E-I 2.514E-1 1.333E-2
2o -0.900 4.043E-I 3.774E-I 3.553E-1 4.280E-1

111. ImpuLseNoise

The special case of signal plus white impulsive noise is of particu-
Lar interest as the median filter appears to perform especiaLly weLL in
reducing this type of noise. As pointed out above and in Table 3, this
is due to the fact that the probability of an impulse being transferred
to the output of a median filter is smaLL. And whiLe this is the
predominate error form for constant signals, when more signal structure
is added other types of errors take over. The probLem of edge jitter
appears to be particularLy significant. This was shown in Section two
with output standard deviation plots and can be qualitatively explained
as foLlows. As pointed out above NOI impulses of the sam sign must be
inside the filter window in order for the output to assume the value of
an impulse. However, if a signal edge is being fiLtered, then an edge
point, x(t) can be shifted by j < NOI positions, Y(tlj) = x(t), by the
simple presence of j impulses of the correct signs within NI positions
of t. Narrow ( - N+ positions wide) plateaus and vaLleys are also sus-
ceptible to impulses; however, these structures are much Less common
than edges in most signals.

The distribution of edge jitter, j(y(t+j) = x(t)) has been derived.
The equations, however, are rather untractabLe and do not Lead to any
particular insight into the process; thus, they will not be presented
here. The distribution was incorporated into program Edg which was used
to compile Tables 4 and 5. TabLe 4 Lists the standard deviation of the
edge jitter, j, for a number of different window sizes (window width =

2N + 1) and double sided impulse probabilities. Table 3 should be used
in conjunction with Table 4 since the possibility of an impulse at the
output is not incorporated into the standard deviation computation.
Note if the edge has only two states, then , as seen in Table 4, the
mean square error contributed by each edge is approximately doubled by
increasing N from 1 to 5 if the probability of impulse is
P+ P_ = 0.05, and this ratio decreases with decreasing P. a P-. This
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increase, then, must be reconciled with a corresponding decrease in the
probability of an impulse at the output by a factor of 1,300 for the
same parameteri as above. Further information can be obtained from
TabLe 5 which gives the amount of jitter with 90X certainty. The List-
ing "impulse" in this table indicates that the probability of the output
assuming the value of an impulse is greater than 10%. The use of these
tables in conjunction with the deterministic properties developed by

GaLtagher and Wise1 1  should greatly facilitate the design of median
fiLters used in filtering signaLs with additive impulse noise as they
help to quantify the various trade offs avaiLabLe in such designs.

IV. ConcLusion

The first order distribution of the output of a median fiLter for a
signal plus white noise input was presented. Using this, the statistics
of several exampLes with impuLsive and gaussian noise were computed and
given. These iLLustrate same of the properties of median filtering.
Edge jitter and narrow plateau jitter are seen to be the dominate error
modes for impuLse noise. For gaussian additive noise, the output more

cLoseLy resembLes that of an average filter but with a Larger standard
deviation and cLoser tracking of edges. For the additive impulse noise
case, some statistical properties of the edge jitter is tabuLated.
These results should aid in the design of median filters since they it-
lustrate many of the properties the designer can expect from these
filters in the important signaL pLus white noise case. However, much
more work needs to be done in this area to develop easier to use and
more general descriptions of the properties of the fiLter while retain-
ing some quantitative abiLity.
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MMSE estimate
E{ X..,IX.,....x._k.,} =A /x..... .,,)

where we assume f(.) to be a Borel measurable function that can
be of a nonpolynomial form. The first class we consider corre-
sponds to the random process being represented by a nonlinear
stochastic-difference equation

x. ,=/(x.,...,._**,)+ + U.+,. (1)

The second class corresponds to the output obtained from pass-
ing a known process through an invertible zero-memory nonlin-
earity (ZNL). Such a process is of the form X. = g(Zn), where we
know the form of the predictor for the (Z.) process. This class of
problems is of particular interest, because the best predictor for
X. does not, in general, involve finding the best prediction for Z.
and using it as the input valve for g(.). The form of the optimal
X. predictor can be quite complicated.

II. CASS I

We define a k th-order stationary random process (X.) as
being a Class I random process if and only if (X.) can be
represented by a stochastic difference equation in the form of (I),
where (U.) are independent identically distributed (i.i.d.) zero-
mean random variables with a marginal density given by P.(.).
Clearly the conditional expectation of X.+,, given the infinite
past of the process, is

On a Class of Rando rocsses Exhibiting Optimal E(X.. I X., X. )=f( X., X. ,, X.
Nonlinear One-Step Predictors

T. E McCANNON AN NEAL C. GALLAGHER. MU4aLR. IbsE Writing the Chapman- Kolmogorov equation for the k th variatedensities, we obtain

A bsoract-Two classes of random processes the exhibit one-step predic- P("+ I)(x,,+ 1 , Xn-k+2)

ton with optimal nonlinear minimum mean-squared ernor (MMSE) ae
discussed, and conditions toir uembetahip to one of these classes are given. =J .. (qX + I ( x +,. I x - A+ 22.1ZM,"-.t I)
Example-s of each class are ptesented, and the optimal one-step priedictort
are given. .P(")(z, . l ,zm-k41) dit ...adA+ 1, (2)

I. INTRODUCTION

The problem of designing minimum mean-squared error where P "t(x.,'",x.-+t) is the joint density of
(MMSE) prediction filters is often complicated by the absence of (AX',. •, X._ ) for the nth sampling instant, and
prior information on the mathematical structure of the optimum q. l(xn1,-,xn-A+21xv, x-_+O is the conditional density
predictor. Historically it has often been assumed that the opti- of (X., 1,. -.X,- 2), given (X.,...- ,X._h+ 1) for the (n + I)

mum implementable predictor is linear, and such well-known sampling instant. From (I), we obtain
techniques as Wiener-Hopf spectral factorization or the ortho- ptn+'(x .+1"" "X.-. +2)
gonality principle are applied to determine the optimum predic-
tion filters. With the advent of modem digital technology, nonlin- f
ear functions are often easily implemented, and hence a renewed =Pu[xm+I- f(xI,. ,x._,+2, Z,,k + I)]
interest in optimal nonlinear-prediction theory has arisen.

We have previously presented [I two methods of designing )(x,.,.x t+ , z- 4tt)dzf, k.t
nonlinear MMSE predictions filters where we have assumed a (3)
polynomial nonlinearity followed by a linear filter. For both of
these design methods, all that is required is knowledge of a finite Since we have assumed that (X. ) is k th-order stationary, the A th
number of moments and cross moments of the given random variate densities are independent of n, and (3) can be rewritten as
process. Wise and Gallagher [21 have shown that knowledge of
certain moments is sufficient to specify the conditional expecta- PR(t, s,.. ,s ) = [ fP.[t-f(s,- .- . st )] P,(sl,- .- . ,sA )ds .
tion. In this case, the optimum nonlinear-prediction filter is given
by a polynomial in the sample observations. (4)

In this correspondence we point out two classes of A th order
stationary random processes (X.) possessing as their optimum We now state the following property.

Property 1: If (X,,) is a kth-order stationary random process
and is representable in the form

Manuurpt received June 26. t980. Ths work ws supported by the Ai+
Frce Office of Scientific Research under Grant AFOSR-78-3605 X.+, =(X," X._..,) + U ,,

The authorb are with the School of Elecitrcal Engineenng. Purdue Unavcr-
satv. West Lafayette, IN 47904. where (U,) are iid. zero-mean random variables, then the k th

0018-9448/81/0900-0652$00.75 01981 IEEE
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variate density satisfies the integral equation First, it is necessary to define what we will call optimal MMSE
estimators and suboptimal MMSE estimators. We consider anP.(t sl,..,s .) = f [t-(,.,st-) .sA ,t) ds,,. MMSE estimator to be optimal if

Our convention is that lower case variables represent the realiza- E((Y - E(Ylx,,,. .x,))'}
tions of upper case random variable. Furthermore, the optimum
MMSE prediction filter is given by E E((Y- E(Y x,.,x.. )

E(X.+x.....,x._+ ) =f(x. ,-" ,x. A,,). that is, one cannot do better even if more information is avail-

An equivalent representation can be derived in a straightforward able. Similarly we consider an MMSE estimator to be suboptimal
manner. We begin by noting that the (k + I)st variate density is if
given by

,k(,,s),. ,. )= p. ,-f (s1,....,sA)lp.(s,. . .,,). (5) E {(Y - E (Yjx , . ,X,) 
}

We then perform the expectation of (,xpi S,p, 1.where u> is (,2-
the complex constant, as follows: > ,X, Y ;x

r k that is, one can do better with more information available.
Elrexpi t SPj Consider the case where (Z.) is in Class I, as discussed in the

S=I tprevious section. The known optimal one-step predictor is
k~ep ' ,t d.-s E(Z.+tjz.,...,z._,+,}=f(z.,....z,_,+,).

f " p s., ,s, )dt d We know from (I) that the conditional density of Z,,,1 , given

(Z",- * "-, k + I), is given by

f..- exp XsP, [,eP[, -(s,.".es)I, q(iI]+1j, .'" *.t-) =pz. 1 -(z. .., A 5)l.
(10)

*P2(S,,...,S)ds .d ,. (6) such that

Via (1) we see that E(g(Z.+1 )Iz.,..._+n}

E( X..,II X....., ,+I) = f'P.[,-/(X... .X..,A+.)]di. fg(z.+,)P.[Z..-41 (ZR,...,- A +,)dz.. 1

Hence we can write Employing a change of variable, we can rewrite (II) as

f .. ,',' exp I""" P

P,(s-,,.,sA)ds, ... ds,=fg[u +(z., ",zM._+i)]P,(u) du. (12)

A If we assume that g(.) can be written in the Taylor series
= f(S,,... 'Sk)eX .ISP (7) 0 g")(a)

J= (.+ a)= 1.9 1! X." (13)

Thus we have (7) equivalent to (5). Note that (7) involves the 5=

charad.teristic function and as such requires knowledge of the kth then we can rewrite (12) into the form
variate distribution. However, there may be circumstances where
(7) may be easier to apply than (5). E g(Z, )1 z,...,.z,_ k+

The expression in (7) is a generalization of a result presented
by Balakrishnan (3] for polynomial nonlinearities Q(-), i.e.. =I g')[f(z" ."'.z'.+ 1)]-.u'P.(u)du. (14)

I=0

( A Ej A (8 efnn
E Ii~t p 1 7. .5Pj Q(S 1,*. .,S,,)exp i S'pj 8 efnn

'',jI.a f,,(u) du,
where O(.) is the optimum MMSE estimator.

and using the fact that g(.) is an invertible function, we can
I1l. CLASS 11 rewrite (14) into the desired predictor for (X.):

Define a stationary random process (Z.) such that E{X .. x. , _ + 1)

X,. g(Z.), n ( . ,-2,- 1,0,1,2,. , (9) 0- , '(x. ,.,)] (,.)
where g(. ) is an invertible function. This particular relation is of ,=0
interest because the random process (Z.) might possess a simple
SIMSE one-step predictor. For example, suppose that (X,,) is Note that (15) is valid only when (Z.) belongs to Clas.s I
such that we can find a g(.) for which (Z,) is Gaussian. We then considered in Section II. This implies that (I5) can be complctel.
know that the MMSE one-step predictor on (Zj is linear. We determined because the coefficients a, correspond directl to
,ish to investigate the best predictor for the (X,,) process. knowledge of the marginal moments of the .hite driving proces..
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Suppose that the random process (Z,,) is charactcnzed by a (23) can be simplified to
suboptimal MMSE one-step predictor of the form

E(Z ,,,lz., "..z., . 1) = -(,,, .. :, .,). (16) E(X . 'x " x ,- *i)

where in the previous example we assumed the optimal predictor =-

to be of this form. In this case, we do not know the conditional I(x,),... )] (24)
density corresponding to (10). If we define (,,) as a random =0
process denoting the error at each sampling instant between the where we set b,, ., c, In most cases, the marginal density
optimal estimate and the suboptimal estimate and Ict P,(.)optial stiateandthesubptial .slmat an le P,(.)P,..,(.) will be difficult, if not impossible, to obtain. For this
denote its marginal density at the nth sampling instant, we can wi
then write the conditional density of Z.. ,, given reason. (23) and (24) should only be interpreted as providing a

functional form for the prediction filter, and the coefficients(7 • . Z. A. ,), as b., 1,, and c, should be obtained through some procedure which

, , z,. A,) minimizes the quantity

,rz.)z.-'n-1+Id,,,, ,, (17) E{(X. I - EX++Y

where r(. I) denotes the conditional density of Z,,,, given IV. EXAMPLES
(Z.,. -. ,Z. A I)and t.,1. Because h(-) is an MMSE estimator,q E(,,, , . We can then write the recursive relation A. Class I Random Process (k = 1)

Z = h ,...,Z + c + P,,, (18) Consider the random process characterized by the nonlinearstochastic difference equation

describing the process (Z.), where (P) is a zero-mean white X.+=f(X.) + U.+
driving process. Equation (18) is then the suboptimal analog to
(I). From (18) we can write where ((U1, are i.i.d. zero-mean random variables. For the case

where k = I, (7) becomes
r~ .,dZ.- -Z - ('+1),1 4(.. . f1)x -f x)P"( .)4 r.,,,(lz... , ,,, -'..i]. (19), , =-

We now make use of the following theorem proved in the

Substituting (19) into (17), we then have Appendix.

q (z,, I, z *.'". . . ) Theorem: If the random process (X) can be characterized by

X,,+1=f(X) + U,,+ 1,
fp[{Z.. I- h(z.,.*.,.n_, ,1) - , . "J.. ,)d,., . where

We compute E(g(Z,. )Iz,,z,',. ) as before and write 1) P,,(.) is strictly positive and uniformly continuous on a
finite closed support f,,, and - -

l.f g(Z..,)lz,,., "zn+l) 2) f: Q-. 0isuch that (v: v=u+f, ue U., fEf; .
and f(-) is continuous on Q.,

= Jfg(z,,i)p,, 1- h(z,, .z., A.1) ,, then the densities P'"I(x.) converge to a steady state ,a,,:ng
density P,(x,,) with finite closed support Q,. Because the magi-

I... ,( i.) dc,,, as,, j. (20) nal densities possess steady state limits, the random process I X,,
is asymptotically first-order stationary. Hence if (X,) satisfie

Employing a change of variable, we put (20) into the form the conditions of this theorem, then (X.) beongs to Class I with
k = 1.

A•t) B. Clas 11 Random Process

4 -/g p+h(:,,._. i )I/p,,( p - )P.(,) di ,d . We consider a particular example of Class 11. We assume that
7,) is a zero-mean Gaussian random process and that we have a

(21) suboptimal characterization implying that either (23) or (24)

Again, if we assume that g(.) can be expanded into a Taylor applies. Consider

.series, remembering that g(-) is a invertible function, and upon h(z 1 ,z,, k ) c,,. (25)
defining

4 Applying the orthogonality principle to obtain the coefficient ,,
.I., =_ f- Jp'P,(p - ,)P(..,( ) d dp. (22) we find that the suboptimal one-step predictor is given by

we obtain h(Z.,..._ PZ.-
where

=E ( Z, + 7.)
b , , , , . , K , , , h [ g ' ( x , ) . . . .,- g ' ( x , , , ) ] . ( 2 3 ) E ( Z , ,2 }

I _ I 10

Therefore, the random variables (Z. - pZ.) are uncotielated
- If we assume that the marginal error density is independent of n, with the ranoom variable Z,, at each sampling instant. For this

4"
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example (I8) becomes APPENDIX

(26) PROOF OF THEOREM

where we require P,, - N(O, .,). Consequently. t. - N(O. 0,2). Theorem: If the random process (X.) can be characterized by

and at a fixed sampling instant Z. and (,,, j + P,,.,) arc inde- x,, I= (X ) + U.. .
pendent. Since c., , can only depend on (P,, 1 5 n), PI., and where
c., , are independent as a result of the whiteness of (P.).
Because (Z.) is stationary, the prediction error variance must be I) P(.) is strictly positive and uniformly continuous on a
independent of n, and since e is a constant, 0,

2 = 0,2 must also finite closed support Ql. and
be a constant. 2)f: 1 -. O1 7such that (v: v= u+f, uE 1. E 12/} c 2,

Recall from (22) that and f(.) is continuous on Qi., then the densities P."4(x.)
converge to a steady state limiting density P,(x,) with finitee, -- /fp P,(,p - t )P, (c) dt alp. (27) closed support Q,.

Proof. We need to show
If we rewrite (27 into ~ d.(2)a n

c, f p'lf P(p - -,)P,(() dc dp. 2) P(") is strictly positive and regular

at which point we can then apply the results due to Feller 151.
we notice that the integral within the brackets corresponds to the 1) f, Bounded and Closed: Consider first 2. = (support of
density of the sum, P,., + ,,+,. Hence P )(.) . We show by induction that 1. is bounded and closed

I_ 2 2  2  for all n. For n = , f. 0-. 1 , and because 1. is bounded and
f P(p -)P(,)d-- exp [-p2(o a)]. closed and f() is continuous on 1 then Oiis bounded and

1fT Fo,? + o. closed. Now,

and (27) becomes Q,= (v" V = u + j, u E ,f li "

C,= I.I f , exp [ 2/2(,2o + 0,2 To prove fi, is bounded, first assume that fl, is not bounded;
oP 2 + o 7 ''2 then there exists (f.) E Oisuch thatf, - 'o and (u,) E 2. such

that u - oo or both so that vi = (u. +f,) -. oo. But 1iand U.

The moments of a zero-mean normal random variable are [6] are bounded. Hence f, is bounded.d

I To prove -0, is closed, for any k E fl1 there exists (f,} E

[, I .3... (i - )(0 +,2 , ieven (28) such that (f,) -1o. and for any u0 E 2. there exists (u,) E Q,
0, (28) such that u, - u. Form the sequence v, = u, +f,; v - v, =f

i odd. + uO. But o 2, for all such sequences in (21. Hence 2, is
Because Z. and (t. + &,+ 1) are independent, we can use (26) closed.

to obtain the expression Assume 2. is bounded and closed. By the argument above,
a. + I is bounded and closed. Hence 2. is bounded and closed for

p26,2o + ( o;l + O,2) (29) all n.
From condition (2), we know thatf: 2. - 2i such that (v:

where we have used the fact that (Z.) is stationary. Substituting V = u +f,u E U., f } () 2., and that 2., = (v: v = u -+
(29) into (28), we obtain for the predictor coefficients f,u E. (2.,f E1 (). Hence C2,+ O (2. C 2.-, C .. C C: (2 (2,,.

The support of P,() is given by
[1.3 ... (I- 1)](1 - pl), ," even (30) a1,. fl n .

0, i odd. ( R (I

Finally, by substitution of (25) into (24) and using the nonlinear- Since A2. is bounded and closed for all n and Q. is bounded and
It gy we obtain for the form of the predictor closed by assumption, then (2, is bounded and closed, Also, since

ity g w, or 12, and P(.) > 0 and uniformly cont.,..ous on 2.. then
{ .,, ,, , " , 5'lp4x i s - 20cp' .s,,"' P(') > 0 and uniformly continuous on 2,.

2) The Kernel (P. ( • )) Is Strictl' Postive and Regular: We ha% e
+60r~p~x.I' + 120c,4p<x, " + 120ci. already shown P,(.) > 0 and uniformly continuous on Q,

Defintion (Feller): The kernel is regular if the fantily of
From (30) we obtain the coefficient values transforms P,"'(.) are equicontinuous whenever Po(.) is uni-

formly continuous in 2,.
co = I, We note that P.)'(.) = P(.). Hence P,(O' is uniformN continu-

S(l - p2 )0 2 .  ous on 2,. We have that

" P. - (:)] P-"(z)d.-, 0c-1,4= - )o0,, ....

"I = (' C = 0. Look at the expression of * - f(). We have that E _2,,, 'hich
is bounded and closed, and /: 92,, , -. (2i which is bounded and

We thus obtain for the MMSE one-step predictor closed. Define

15, 1, -2 P1)04 1: p} .
BY the same argument we used to show 2,, is bounded and Jhscd

+ 10p( - )o", .A when £2 , is bounded and closed, we can state r. is bounded
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and closed. Since 0., is compact and P.(.) is uniformly continu-
ous. then there exist a.oE 0p. such that P.a,) = sup" r= P,,(x).

Define M = max,(lP(a.o)I). Then because

I P.",(- )I S f _,lP.[,- (z)]l. "-(z)j dz.

we have

I P."()i <A-5-Mfo P ->:Id . fraln

Recalling 

that

P,.'(0) f P. * f(z)P;--,)(z)dz

we can immediately write

P1") - P.M(44)I -fa.-IP.[,- -f(z)] ," -A." -f(z)1I

•I P( -(z)I dz.

Define W= max.u dz<ao. Pick an arbitrary zE0.-1.
Give c > 0. Let 8 = 8(c) > 0 such that I1' - -"1 -< 8. Then
IP.[,' -f(z 0 )] - P.[* -f(Zo)] ! c/MW, because P.(.) is
uniformly continuous on U., for all n. Hence I Px((,') -
P."'(#")I 5 (cIMW) MW = t, for all n and P,")(.): therefore,
P,' (-) are equicontinuous and the kernel P.(.) is regular. We
now appeal to the following theorems:

Theorem 3 [ Feller]: Every strictly positive regular kernel on a
bounded closed interval is ergodic;

Theorem 4 [ Feller]: A strictly positive regular kernel is ergodic
if and only if it possesses a strictly positive stationary probability
distribution; where P,(x) has support 0, which is bounded and
closed.
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A Theoretical Analysis of the Properties of Median
Filters

NEAL C. GALLAGHER, JR., MEMBER, IEEE. AND GARY L WISE, MEMBER, IEEE

Absucr-Necessary ad sufficient conditions for a signa to be in, 1. INTRODUCTION
variant under a specific forn of median fitering are derived. These

*conditions state that a signal must be locally monotone to pa through TN many signal processing applications, a method called me-
a median Mten unchanged. It bs proven that the form of successive me- idian filter~ ng has achieved some very interesting results.
dian fisseing of a signal (IAk., the fitered output Is itself qpia filtered) One useful characteriftic 6f median filtering is its ability to
eventually reduces the original signal to an invariant inal called a root
signal. For a signal of lengt L smples, a mAXImum of j (L - 2) re- preserve signal edges while filtering out impUlseL1 Promising
pealed fillerinap produces a root dpol applications of median filtering are picture processing and

speech processing 111-[3). The implementation of a median
Manuscript received December 7, 1979; revised April 16, 1981. This filter requires a very simple digital nonlinear operation. To

work was supported by the Air Force Office of Scientific Research begin, we take a sampled and quantized signal of length L;
under Grants AFOSR 78.3605, AFOSR 76-3602, aWd AFOSR 81-0047. across this signal we slide a window that spans 2N +' I signal

N. C. Gallagher, Jr. is with the School of Electrical EngineeriLs Put- sample points. The filter output is set equal to the median
due University, W. Lafayette, IN 47907.

G. L. Wise is with the Department of Electrical Engineering. Univer- value of these 2N + I signal samples, and is associated with
sity of Texas, Austin, TX 78712. the time sample at the center of the window.
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In one form of median filtering, to account for startup and N = 4 fliter. If the constant is filtered again, the output is the
end effects at the two endpoints of the L-length signal, N sam- same as the filter input; the constant is invariant to median
pies are appended to the beginning and the end of the se- filtering. So, by filtering this particular original signal two
quence. The appended samples are constant and equal in value times with an N = 2 or N = 3 filter, we have a resulting signal
to the first and last samples of the original sequence, respec- that is invariant to successive filterings, the same result ob-
tively. For other ways of treating the start-up problem that tained by a single pass with the N = 4 filter. Note that the sig-
gives less emphasis to the firt and last values encountered, nal input signal of Fig. I is invariant to repeated filtering with
see (4, p. 2211. an N = I filter. We call such a signal a root of the median fil-

As an example, consider the binary valued sequence of ter. We see that signals which do not reside entirely within the

Fig. I () where L = 10 and N a I, the median filtered signal filter "passband" can be reduced to their passband component

is plotted below the extended input signal. The appended by repeated filterings.
values are marked as X's. Fig. 1(b) illustrates the filtering of In this paper, we will formalize the concepts of filter pass-
the same input signal as for Fig. l(a), but we set N = 2;we set band and stopband. We described desirable signal character-
N = 3 for the example in Fig. 1(c). The signal of Fig. I passes istics for signals employed in median filtering, and show how

undisturbed through the N I filter; however, it is affected by some types of noise can be completely removed by median

the N = 2 and N = 3 filters. The signal would be reduced to a filtering and how other types cannot be removed. These re-

constant value by an N = 4 filter, suits will be presented through the development of a formal
The results illustrated in Fig. I suggest the concept of a filter theory of median filtering. In Section II we present some

"passband" and "stopband." The given signal is in the pass. basic definitions that allow us to precisely state and prove a

band of the N a I filter and the stopband of the N = 4 filter, number of interesting results. The reader concerned only with
If we view the median flter as one that passes edges but not results may wish to proceed to Section Ill.
impulses, then edges for an N a I filter may be impulses for
an N = 4 filter. But what about the N a 2 and N = 3 filters? II THEORY FOR MEDIAN FILTERING

Stippose the signal of Fig. I is filtered twice in succession by In order to give a precise statement for the theorems pre-
the N = 2 filter; in other words, the filtered output is again sented later in the section, a number of definitions are neces-

filtered. The result in this specific instance is a constant out. sary. We will always be working with a sample length 1, where N.

put identical to that obtained by a single filtering with an each sample is quantized to one of K different values. The fil-

4I.
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ter window length is the number of consecutive samples con- as before, we again find that the N + 2 leftmost points in the
sidered when computing the running median. We will always window form a monotone sequence. Indeed, a straightforward
take the window length to be an odd integer (2N + 1) for N = inductive argument proves that the leftmost N + 2 points in
0, I, 2, - • •. As noted earlier, our convention is that the filter the window foim a monotone sequence regardless of the win-
output at position L is the median value obtained when posi- dow position. Recalling that the extended signal has N con-
tion L is in the center of the window. We define the following stant points appended to the right of the original signal, we
signal characteristics, see that the extended signal is such that any consecutive N + 2

1) A constant neighborhood is at least N + I consecutive points must be monotone. Thus, a signal invariant to median
identically valued points such that the constant neighborhoods filtering must be such that the extended signal contain only
and edge together are monotone. constant neighborhoods and edges.

2) An edge is a monotonic region between two constant Now assume that the extended signal contains only constant
neighborhoods of different value. The connecting monotonic neighborhoods and edges. If the center of the window is at
region cannot contain any constant neighborhood. any signal sample, then the points in the window are either

3) An impulse is a constant neighborhood followed by at monotone or nonnonotone. If the points are monotone, then
least one, but no more than N points which are then followed the signal sample at the center of the window is not changed
by another constant neighborhood having the same value as by the median filter. If they are nonmonotone, then the win-
the first constant neighborhood. The two boundary points of dow must be centered on a point in the constant neighbor-
these at most N points do not have the same value as the two hood shared by two edges. Of the 2N + 1 points in the win-
constant neighborhoods. dow, at least N + 1 of them are equal to the center point, and

4) An oscillation is a sequence of points which is not part of thus the center point is unchanged by median filtering.
a constant neighborhood, an edge, or an impulse. These observations are formalized in the following theorem.

Of particular interest is the class of signals that can pass Theorem I-Given a length-L, K-valued sequence to be me-
through the filter unchanged, as well as the class of signals that dian filtered with a 2N + 1 window, a necessary and sufficient
are completely removed by filtering. Assume that an L-length condition for the signal to be invariant under median filtering
signal is filtered with a 2N + 1 window. As noted previously, is that the extended signal consist only of constant neighbor-
we always append to the beginning of the signal an additional hoods and edges.'
N constants equal in value to the first sample of the signal. The following corollary is a direct result of this theorem.
Similarly, N constant points are appended to the end of the Corollary-For a median-filter-invariant signal to contain
L-length signal. By doing this, we assure that when the initial both regions of increase and decrease, the points of increase
signal's first or last sample Is in the center of the window, the and decrease must be separated by a constant neighborhood
median filter output equals this sample value. For a signal to (at least N + 1 consecutive identical points).
pass through a median filter unchanged means that the central As a result of this theorem, it is possible to construct signals
sample value for each window position is itself the median of that are invariant to median filtering. Also, given the space of
the samples within the window, all length-L, K-valued signals S, it is possible to identify all

Consider a signal that is unchanged by median filtering. As- those signals invariant to median filtering with a 2N + I win-
sume that the window increments from sample to sample mov- dow. We will call these signals the roots of the filter, and this
ing from left to right across the signal and that the window is set of signals is denoted as RN. Note that RN C S for any N,
now centered at the second signal sample of the original signal. and that we have the following lemma.
We know that the N points to the left of center have the same Lemma 1: For an L-length, K-valued set of signals S, the
constant value. If they equal the value of the center point, root sets RN are nested such that
then it (the center point) must be the median. If they are less
than the value of the center point, then the N points to the RN, iC RN C -'CR0 =S.
right of center must be all greater than or equal to the central Proof" If a signal is invariant to a filter of window length
value. If the N points to the left are greater in value than the 2(N + 1) + 1, then each neighborhood of N + 3 samples is
central point, then the N points to the right are all less than or monotone. Consequently, each neighborhood of length N + 2
equal to the center value. Thus, note that the leftmost N + 2 is monotone and the signal is invariant to a filter window of
points in the window form a monotone sequence of points. length 2N + 1; i.e., RN, I C RN. It is trivial to verify that a
Increment the window another sample to the right, so that the window of length I reproduces any signal exactly upon filter-
window is now centered at the third signal sample. The left- ing because the median value of a set containing just one point
most N + I samples in the window form a monotone sequence. is the value of that point; thus, Ro a S.
Assume that the N leftmost points in the window are not We have established that, for a given filter window 2N + I
greater than (respectively, not less than) the center point, and a signal set S, there exists a root set RN of signals invariant
Then, since the center point is the median value of the points to filtering. For a given L-length signal s, we represent the
in the window, the N rightmost points in the window must be median-filtered version ofs byf',(s) for a 2N + I size window.
not less than (respectively, not greater than) the center point. We represent by fA()(s) the twice filtered signal
Thus, we see once again that the leftmost N + 2 points in the I It has recently come to our attention that S. Tyan has proven a ver-
window form a monotone sequence. Increment the window sion of this theorem in an unpublished manuscript. We have not seen a
another sample to the right. By applying the same argument copy of this manuscript and can only speculate as to Its content.
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fA (s) = fN [fN(s)I
•  equal to the value at p + I (and at p) and there also renain V

points in the window greater than or equal to the value at
We define f7'(s) as the n-times filtered signal p + 1; consequently, point p + 1 is the median and would not

Af(n)( If (#I-)(s). change. Thus, the value of the first point to change must be
greater than its predecessor.

If s --fN(s), then s is a root of the filter. We next prove that Recall what is known concerning the last consecutive point

for any signal s there exists an n such that fN(n)(s) = r where r p that is invariant to filtering. The N points in the window to

is a root. the left of the center point p are all less than or equal to p in
Suppose that we are given an L-length signal s that is not a value; the N points to the right of p are all greater than or

root. Recall that N constant points are appended to the begin- equal to P in value. When the next point, p + 1, is cntered in
ning of the signal. By construction, the first original signal the window, there will be at least N points less than or equal
point is the median of the interval for which it is the central to p in value and at least N + I points greater than or equal to
point. As we slide the window from left to right across the sig- p in value. Therefore, the median value cannot be less than
nal, the first point to move (i.e., where the window's central the value of p. For convenience we summarize this as the
point is not the median) must, by definition, be either a point following.
contained in an impulse or oscillation. Suppose that it is an Observation 1: The value of the first point to change value
impulse. By construction, an impulse has two constant neigh- during a median-filtering operation must be on the opposite
borhoods of equal value on either side, and every point in the side of its predecessor than the most recent constant neighbor-
impulse is filtered to this constant value by one pass of the hood, and the value of this point upon filtering moves toward
filter window. Suppose that the first point to be moved is the value of its predecessor, but does not move past this value.
contained in an oscillation. Let p be the location of the last Continuing in this fashion, consider the point p + 2, which
point unaffected by the median filter, and assume that the follows point p + 1. Note that the value at p + 2 is greater
filter is centered at this point. Then the leftmost N + 2 points than or equal to the value at p. As the window is incremented
must be monotone as seen in the proof of theorem 1. Assume to the right, p + 2 is centered in the window and a point moves
without loss of generality that they are monotone nondecreas- out of the window on the left. A new point enters the window
ing. Assume that the window is now centered at the point on the right. The value of this point must be either greater
p + I. By hypothesis, this point must change in value. Recall than that at p or less than or equal to the value at p. If it is less
that the leftmost N points are not greater in value than the than or equal to the value of p, then there are at least N- I
center point. If the N rightmost points were greater than or points in the window with values less than or equal to that at
equal to the center value, then this value at p + I would be the p and at least N + I points with values greater than or equal
median. Thus, at least one point to the right of center must to that at p. Consequently, p + 2 cannot be filtered to a value
have a value less than that at p + 1. Thus, there are N + I less than that at p. If the value of the new point is greater
points in the window not greater in vahie than the center than that at p, then, trivially, the filtered value at p + 2 cannot
point, and the center point changes. Therefore, it changes be less than that at p. The same reasoning can be applied to
downward in value. Note that it can never achieve a value less points p + 3, p + 4, ,p + N. For conveniene, we summa-
than the value of the immediately preceding constant neigh- rize this as the following.
borhood because there are always at least N + I points con- Observation 2: After filtering, the N rightmost points in the
tained in the window, including that at p + I itself, whose val- window centered at p must all have values equal to that at p or
ues are all greater than or equal to the constant neighborhood. on the opposite side of the value at p than the most recent

So we see that the first point that changes under filtering is constant neighborhood.
preceded by, but not necessarily adjacent to, an invariant con. Consequently, the value at p is always invariant to median
stant neighborhood, and the point is contained either in an filtering, and, in addition, the same argument applies to any
impulse or oscillation. We also see that upon filtering, the other (invariant) point to the left of p. Also, the point p + I
value of this point moves closer to the value of the constant has one of two possible filtered values, as follows.
neighborhood. There are two possibilities: the value of point Observation 3. Of all the values in the wlndow centered at
p equals the value of point p + 1, or the value of point p + I is p + I, the filtered value at p + I is either the value at p or the
greater than that at p. In addition, it can be shown that the closest value to the value at p on the opposite side rom the
valu#; of point p + I is greater than the value of point p. Sup. most recent constant neighborhood.
pose that the two points have the same value. As the window By using an argument similar to that just presented, we rea
increments from position p to p + I, one point moves out of son that the filtered values at p + 2 -. p + N are greater than or
the window on the left side and another point moves into the equal to the filtered value at p + I. If the filtered value at p + I
window on the right. The point that moves out on the left has is the same as the value at p, then point p + 1 is invariant to I-
a value less than or equal to that of point p + 1. Because we tering on the next pass of the window because it is not greater
know that the filtered value at p + 1 is less than the original than the value at p. Suppose, however, that the 1titeed value
value, the point that moves in on the right side mutst also have at point p + I is greater than that at p. We must reexamine the
a value less titan that at p + 1; otherwise, the value at p + I prefiltered point values. When p + 1 is in the window cenici,
cannot decrease. If the value of point p + I is the same as that the N + I rightmost points must all have values greater th.in
of p, then there remain N points in the window less than or that at p including the rightmost point p + + t I. As a '.suli.

.__...__._.........___..__-_-__----
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Fig. 2. Result of repeated median filtering.

S

Fig. 3. Partition of the signal space S by eight roots.

when p + N + I is in the window center, the leftmost N + I is not needed because an L-length signal can have, at most, L
points have values greater than that at p and the filtered value different values even if the signal samples are not quantized to
at p + N + I must be greater than that of p. Consequently, on specific values. Thus, we can always bound K from above by
the second pass of the window, after all the points have been the value of L, and all results stated in this paper apply to un-
filtered once, when point p + I is in the window center, the N quantized signals.
leftmost points are all less in value than that at p + 1, and the It should be noted that the value of the appended constant
rightmost N points all have values greater than or equal to that points is not important for the key results of Theorems I and 2
at p + 1. Thus, p + I is the median of the window and does to be true with only slight modification to their proofs. It is
not change value upon the second filtering. This yields the only important that these values be constant. It is possible to
following, assign nonconstant values to these points such that Theorem I

Observation 4: The first point to change value on a median- does not hold true. Finally, we also note that Theorems I and
filtering operation remains invariant upon additional filter 2 represent median-filter properties that have been observed in
passes. the past without proof [4, p. 212].

When the observation is made that the median-filtering op-
eration is independent of whether the window moves from III. DIScussioN

right to left or left to right across the signal, we see that the The theory developed in the preceding sections provides a
properties of the first point to change value apply also to the number of interesting results. First, we note that every signal
last point in the signal to change value. Because of the ap- in the space of signals, s C S can be filtered to a unique root
pended constant valued points to the front and back of the with a bounded number of repeated filterinp. Thus, the ele-
L-length signal, the first and last signal points are invariant to ments of the root set RN partition S as illustrated in Fig. 3
filtering. Thus, at most, *(L - 2) window passes are required where it is shown how the signal space is partitioned by a root
to reduce the signal to a root. As a result of the previous dis- set with eight elements, whereupon repeated filtering every sig-
cussion, we have the following theorem for an L-length signal. nal s E Ss is filtered to root PS r= RN and so on; we will call Si

Theorem 2- Upon successive median-filter window passes, the ancestor set of root ri . If a signal s requires L filter passes
any nonroot signal will become a root after a maximum of to reach the root r3, we say that s is an Lth generation ancestor
I (L - 2) successive filterings. Also, any nonroot signal cannot of r3. We know from Theorem 2 that any root has, at most,
repeat, and the first point to change value on any pass of the *(L - 2) ancestral generations, and we know that the root of a
filter window will remain constant upon successive window signal depends on the filter window size, i.e., a root for a win-
passes. dow of size 3 may not be a root for a window of size 5, al-

To illustrate this characteristic of median filtering, consider though a root for a size S window is always a root for a size 3
the binary valued L a 8 signal of Fig. 2. This signal will be re- window. In a loose sense, median filters are a type of low-pass
peatedly filtered by use of a window length of 3 samples. The filter with an increasingly narrow pmband as the window size
appended constant terms are marked with x's. We see that increases.
W, - 2) = 3 window passes are required to reduce this signal The application of median filtering to signal smoothing prob-
to a root. lems introduces an interesting twist to the concepts of signal

To this point, it has always been assumed that the signal is and noise. A simple median filter has no design parameters
quantized to K levels for an L-length signal. This requirement other than window size, so long as we append N values to each
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end in the way discussed. It cannot be designed to accommo- 121 N. S. Jayant. "Average- and median-based smoothing techniques

date special signal or noise characteristics. In the extreme case, for improving digital speech quality in the presence of transmission
errors," IEEE Tra. Commun., vol. COM-24, pp. 1043-1045,

a filter can completely remove a signal component, leaving Sept. 1976.
only noise. It seems desirable that a noise-free signal be a root [31 L. R. Rabiner, M. It. Sambur, and C. E. Schmidt, "Applications of

signal in order that it is invariant to median filtering. If the a nonlinear smoothing algorithm to speech processing," IEEE
Trans. Acoust., Speech, Signal Processing, voL ASSP-23, pp. 552-

root signal has added noise, then it may or may not be possible 557, Dec. 1975.
to remove the noise by filtering. Noise that can be filtered is 141 J. W. Tukey, Exploratory Data Analysis. Reading, MA: Addison-
noise that changes the signal in such a way that the noisy sig- Wesley, 1977.

nal is an ancestor of the same root. This noise can be removed
with repeated median filtering. However, if the noisy signal is
now the ancestoi of a different root, then it cannot be removed
by repeated median filtering. This property of either perfect
signal recovery or false signal recovery points to yet another Neal C. Gallagher, Jr. (S'72-M'75) received the
application of this form of median filtering-channel coding. Ph.D. degree in electrical engineering in 1974

application , from Princeton University, Princeton, NJ.
For this application, the root set R corresponds to an alphabet After being a member of the fa.ulty of Case
set. The transmitted code can contain either roots or ancestors. Western Reserve University, Cleveland, OH, he
In either case, decoding is accomplished through repeated joined Purdue University, W. Lafayette, IN, in

filtering. 1976, where he is an Associate Professor. He
has Publications in the areas of numerical anal-

In this paper, we have established several fundamental theo- ' yals, digital signal processing, source coding,
retical properties of one form of median filters. We have pre- and optical information processing. fie is Past

President of the Central Indiana, Central Illinois,
sensed necessary and sufficient conditions for a signal to be Chicago and South Bend section of the IEEE Information Theory
invariant to median filtering, and we call these signals roots of Group. He has consuled for industry and government in the azeas of
the filter. We have also shown that repeated filtering of any real-time signal processing, spectral estimation, and holography.

signal results in a root signal, and have established the maxi-
mum number of filtering operations required to reach a root.
As a result of the theory developed in this paper, a better un-
derstanding of the potential applications, as well as the limita-
lions of these filters, is achieved. G, ruy L Wise (S'69-S'72-M'74) was born in

4A Texas City, TX, on July 29, 1945. He received
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bold 1. ITRaODUCTION

A Block or vector quantizatio deals with the representation of
PA < fP(y".. I K,++xK) multidimensional elements with a finite discrete set of values. The

~,..,~.*,. r tvalues to be quantized may naturally fall into a k-dimensional
representation; typical examples are complex numbers, positional

P(y,.1 Kh) r.'a"' (A3) cordinates or state vectors. In other cases. k-dimensional vec-
A tors are formed fronm blocks of k samoples taken from one-

XX H[P~4.. ,I + 1)P, 4,. 31Kil 12  Intensional signals. In 1%64 Zador pubhished a number of very
[Py,.. K, + KaPy,.lK)" interesting results on the properties of optimal block quantizers

for the rth moment Euclidean norm distortion measure (11.
K.)]""(A4) Among Zador's contributions are the derivation of both upper

adlwrbounds on the distortion introduced by the optimal
W finst inequality holds because ( I' )/2 is still greater than one, qmie.7ts onsaedrvdwtotatal udn h
tMe the second is valid because we are extending the sum over Optimal 441antiZer. Unfortunately, &t somne points Zador's devel-

Sager set. Inequality (Ail) can be rewritten as opment is not easy to follow. and altiernate derivations anld
A extensions by Gersho (21 and Yamada *I saL 1J have recently

<11 " appeared. In Section 11 we present an alternate derivation of
T. ~ [PI,m,IKK, Ah yjr,~j.nb '1 Zador's random quantization upper bound not treated in either

(2 r[3).x~)P(,.,..,1x)J"2 In 141 lucklew and Gallagher show that for one-dimensiona]
[P(Y-')I,+K),P~,,.,IK.]""mean squared error distortions the optimum quanta hast the

vpm. I property that the mean value of the quatiier output equals the
mean value of the input and also that the mean square quantiza-

Pf,5  K + K. ~,IK)(5 tion error equals the variance of the input minus the variance of
LI1 .Y, I~ ~ ,~)j the output. In [51 Ducklew and Gallagher prove that the ae

results hold for constant step-size minimum moa squared eamo
ie to the fact that the channel is memOrylell, we have finally quantizers. In Section III we extend these properties to k-

P ~ (A6) dimensioal optimal block quantizers.
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II. RANDOu QUANETIZATION UPPEi BOUND bility that the closest output level is within a distance p of the
input sample. we combine classical order statistics with the result

In 21 Gersho provides a ver y readabe rivation of Zador's found in (31. By employing this approach, we compute theexpression for quamtier distoron. To improve continuity and probability density A(P) for the distace twen the input sam-

readability we employ Gershos notation. The quantizer input is a p it d the distanctbeuteetthe inutosam
k-dimensional random vector x in 1, which is quantized to one PIC and the nearest output level to be

of Nlevelsy,, y2" • .,y, in 0,4. The space 'AA is partitioned into f(p) = NI - Vp]N'_Vkr - .N disjoint and exhaustive regions S1, S2, .. ,,. The quantizer is

defined by the function Q(x) defined by Q(x) = y,, it x E S,. Note that for large values of N this probability density goes to

Note that this derinition does not require that y, E S, although zero rapidly as p increases By construction p = l x - y, 11, where

in practice y, is usually contained in S,. The performance of the x is the input value and p, is the output value. Consequently,

quantizer is measured by the distortion EI ()I EO)

D = !E(OX - Q(X)') so,

where 11 *l1 denotes the usual Euclidean distance norm, the = p)
operator E( ) denotes statistical expectation, and the input X is k
a k-damensional random input vector. The cas where r = 2 is the
usual mean squared distortion. The expression derived by Zador = ( +'- N [ I - V, p ]-k VAdp.
and Gcrsho for the minimum distortion Do obtained by use of the k hypmij

best quanter is Make the change of variables s Vtp' and use the fact that
Do = N-'/5 C(k,r)lp(X)l,/t 5 +,1 , (I) s S I to write

where r(. + .. rN)
k o/, f vk' (+I +

and where the constant C(k, r), called the coefficient of quanti-
zation, is independent of the density p(x) and is in general where r(.) is the gamma function. For laug N the following
unknown. This expression is an asymptotic result valid only for approximation is valid:
large N. Two special cam for which the value of C(k, r) is reN)
known exactly are 121 '

+ kC(l,,) -j ',( k )

and Theeore,

S+
C(2.2) =k -/A~

Consider the density p(x) having a constant value of one over
the unit volume hypercube; then lp(x)ll,, ,= I. In this case Becaus D a Do. we use (2) to write

Do = b-cme'/c ,,). (2) (k. ,) k

So, we see that by finding a bound on D. we also bound C(k, r).
To find this bound we choose the quantizer output levels to have which is Zadors random quantimatiom upper bound.
a random distribution uniformly distributed over the hypercube.
For a particular input value x, we find the closest output level 111. MoMENT PRO ' 3 IES Of OPTIMUM QUAN TI-Zks

* and quantize to that value, Because this quantizer is not the In 141 and [51 it is shown that. for minimum mean squared error
optimum quantizer, the associated distortion wili bound from one-dimensional quantizers. the mean of the input equals tie
above the distortion for the optimum quantizer. mean of output and the distortion equals the ,ariance of the

To begin, place at random N independent uniformly distrib- input minus the output va . 7 p r an shown to
uted k-dimensional samples in the hypercube. These will be t apply winu th hout t ariae step-si onsti nt sn thi,
output levels. We take the quantizcr input X to have a uniform apply wt anrithou t th e onstoin Iase
distribution over the hypercube. We also assume that N is suffi- We are interested in the prets of quanimer desined to

ciently large so that there is a very small probability that the minimize the distoerio defined by (2) foro = 2:

quantizer input is closer to an edge of the hypercube than to one

of the output values. Suppose that an input value J has arrived I
and is sitting in the hypercube waiting to be quantized. The D = {IIX- Q(X)II T
probability that one particular output value is within a distance p
of this input sample is given approximately by the volume of a Many constraints we might impose on the quanuzer can bc
sphere of radius p about that sample point, or imposed by the functional form of Q(x); for example, the

Pr (one particular output Level is within p of k-dimensional version of the equal step-size condition might
the input sample) ow, require the regions S S3. ,,N to have equal volume and be

congruent. We had originally employed a variational approach to
where if V, is volume of the unit radius sphere, then VAp is the obtain the results of this section; however, an alternate approach.
volume of the sphere with radius p. We are interested in the suggested by an anonymous reviewer, provides more intution
.lobet output level to the input sample. To compute the proba- into quantizer strucure. So, we employ his method.
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To begin, we define the parameters P, and X, as follows: variance minus the output variance. Also, a simplified derivation
of Zador'srandom quantization upper bound is developed.

P,Jf P(x) dx, m c

and 11) P. Zador. "Development and evaluation of proceduca fot q"Mwzn
mutvanatc 4dwmbutionii." Ph.D. disaertation. Stanford Univ., Sitanfd
CA. 1964; Univeraity Mirofilims Im so. 64-9955.

X.=P' If P(x) dx. (3) 121 A Oervho. "Asytnptotially optimal block quantiation." IEEE Tram.
S. Ifaom. Theory. vot. 17-23. pp. 373-380. July 1979.

(31 Y. Yamada. S. Taki. nd It. M4. Gray, "Asymptotic pedonjuias* of
We note that partition (S,)I., need not be the optimum parti- block quAntizen with difference dialtoni meaiaumea, IEE TniU. I*-
tion. Consider two different quantizers defined over the partition fiwm. 77tory. val. 11-26. pp. 6-14, JMe. 198.

I ,v: one with Output Value X, and oe with Output value , 141 J. A. 111"klew and N. C. Gaillaier. 'A nose on optimal quanuirasion."
IEEE Tram,. Inimm.. Thi.y. vol. IT-25. pp. 365-366. May 1979,

Thte quanuizer functions wre represented as Qu(X) =-X, and IS "Sow PrPte of unfI S"st quantiues. IEEE Tkans Ina~im.
Q(X) = YV, respectively, It will be shown that the quanuizer Thewy. vol. IT-26. pp. 610-61). Sept. 1930.
Q0( X) is optimum (or the given partition. We have that

£(IIX - Q(X)11) f JX (- ;j + Xi - A) P(x) Ax.

(4)

By (3),, weha ee Binary M ultiplyin O annel-A Coding Sce ens
f(- )( - y,)P(s) dx =0; that Operates Beyond Shanoosts

ImrBound Regn
therefore. (4) becomes 3. PIEE M. SCAK~f aun Idismmi. via

E(IIX - Q(X)112) = E(1IX - Q.(X)111) + P'llx' - Yl'. '4hjce-Shekwds hMiny mmbinlg hmmud Is sell has.. a M
dixanspife of a two-way eaI 'Ur *Wte Shumns lam, ad MWr hernial

(S) to d ti qity riem differ. A dwundaibblikcud astl n Iis gies whheh

The expression in (5) illustrates that the quantizer Q0( X) pro- evm romm nerromfrdscadd ue s!aitausl
ducs an error no larger than any other quantizer Q(X) for &as aslg hV1fr anterk lyp at tuoway chsss.
given partition. Also, by (3) we see tha the mean of the quantizes 1.ITOco
outputs equals the mean value of the input; this follows by Shannon (11 derived iner and. outer bounds; to the capacity

N~x NJz~~x JX~) 6 region of the two-way channel (TWO. A TWC (see Fig. 1) is a
SiV~r) fxPx) ix. 6) iscete memoryless channuel with fiit input and output aI-

itphabiets and defined by amatris. IP(yl, y2 x 1, x2 )) of transition
where the left side is the mean of the output and the right side the: probabilities. Shannon's inner bound region equals the convex
mean of the input. It can also be shown that the quantizer error hull of the region of irate pain (I(Xi; Y1 X2), I(X2; YIX,)
equals the variance of the input minus the variance of the output. where the input distribution P(xI, x2) is allowed to vary over all
Consider the input vairianice product distributions P(xi, z2) =?(x,)P(x2 ). Likewise, the

Shannon outer bound is the conve hull of the region of rate
E(1IX - E(X) 12 ) =E(IIX - Q0(X) + Q0(X) - E(X) 112  pairs (l(X,; Y~j X2), I(X2; Y1 I Xe)), where the input distribution

E(1X Q(X)2) E(q0() EX)2) P(x,, x,) is no longer restricted to be of the product type.
E(II Q0()112 + {UQ.X) -E(X~l), Blackwell's binary multiplying channel (flMC), which is a

(7) TWC saisfying yl Y =XX 2,uisan example of aie TWC
forwhih te inerand outer regions differ, In Fig. a we have

where as before the cross terms are zeo. The right aide of (7) is reproduced fronm I I the boundary G, of the inner region and the
:i,imply the bunm of the quantizer error and the output variance, boundary G, of the outer region for the RMC. (See I I for explicit

Equations (6) anW (7) specify the first and second moment equations specifying these repass.) We show that each point on
properties of the optimum quantiser; these properties follow the third curve in Fig. & can be ochived by a certain determittis-
rc&Ardles of the optimality of the partition. In addition, it is tic coding scheme. Consequently the inner region for the BMC is
noteworthy thtteoptimum quanitisno unique. Asimple othecapacity region. (An analogoeu thd a obtained
example serves to illustrate this point. Consider a two-dimnensional earlier by Dueck [21 for a TWC which was not a BMC.) For the
circularly symmetric input density. Any rotation of a minimum sake of simplicity, in the next section we first describe the coding
error quantizer is also a minimum error quatntizier. Thbe same scheme which achieves the point on our curve for which it R ~
property holds for one-dimenisional quantizers, where it is poss i Ci TUTG
bile to have more than one minimum error quantizer. 1.T o oSR~o

VIL SUNMAY The senders try to sead inormtion that without loss of
generality can be taken as the location of a subinterval 13b 141, of

T'his correspondence contains two results dealing with the
properties of k-dimensional minimum mean squared error quan- Mmluw* ip d Ocoe 6. 1111o0 rind Apri 1S, 11141. Mha pawe was
tzers. We have established necessary condiions for optimum presented at the 1961 International "rsyqumum an hformation Tbeary. Santa
quantizers. These Conditions are Used to show that for k. Monica. CA. Feb. 9-1.
intensional quaintizers the mean value of the input is preserved UMw uy of teh ftoj Den Dolsm 2f SlP0 e De ses & 51. 60 Dsdhoe

in the output and that the mean squared error equals the input rNww
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We have shown in a previous paper that an op- where
timum quantizer can be designed for the random vec-
tor i, when X is uniformly distributed. However, Pi = f P(x)dx

finding an optimum quantizer when X has an arbi- Ci

trary density function is in general very diffi-
cutt. Thus in this paper we consider the design of Now compare the quantization of the random vec-

near-optimum quantizers for X when the density is tors X and Y where Y has the density g(x). We de-

nonuniform. The results show that if we allow the fine 4- as the optimum quantizer for X given p(x)
number of quantization LeveLs to be Large, we can 0

obtain a distortion performance arbitrarily close and g as the optimum quantizer for Ygiven g(x).

to the distortion of the optimum quantizer. The Zador's equation for the minimum per sample distor-
results also provide a useful toot for the compand- tion of X is

ing design of optimum quantizers discussed Later in 1
the paper. o . E(Xj-Q 0( )11r = C(k,r)N -rkPllklk+r (1)

1. Introduction where

A number of authors [1]-[4] have examined the
advantages of muLtidimensionaL quantization over X k-dimensionaL vector
univariate quantization. UnfortunateLy muitidimen-
sinnal quantizers are difficult to design and must Q (K) quantized output of Q

usuaLly be implemented using a search procedure. 0 - 0

The disadvantage of a search implementation is that N number of quantilation LeveLs (assumed

the storage and computation requirements increase
with the number of quantization Levets and the di- C(k,r) constant dependent only on k and r

mension of the quantizer. In a previous paper [5],

we present a method called preQuaritization for the PCX,)
design of optimum uniform muLtidimensionaL quantiz- IIpI L 4p1)adJ

ers without the drawbacks of a search. Now in this
paper we extend Sennett's companding results [6] to SimiLarLy the optimum distortion corresponding to

k-dimensions for the design of nonuniform muLtidi- the random vector Y is

mensionaL quantizers. These new methods also avoid - 1 I )-r/k
problems associated with a search. k e(,lyQg(! l_) a C(k,r)N- rl- 2 klk.r *

11. Piecewise Companding Using (1) and (2) and Sennett's integral for

Let p(x) be the probability density function mismatched quantizers, we can show that a near-

(pdf) of the vector X. We begin by constructing a optimum quantizer for the random vector X can be

density g(x) that is a piecewise constant approxi- designed by finding an optiaom quantizer Tor a ran-

mation of p(a). Let S be the compact support of dom vector with the density g(x). As the aproxi-
both p(m) and g(x). We partition S into M compact motion of p(x) by g(x) becomes more accurate ("*.),
regions- each den-oted by C and with area (measure) the distortion approaches the optimum distortion.

r Given this background, we now examine the design of

mi for i a 1,2, ...,M. The density is then defined optimum quantizers for random vectors with piece-wise constant densities.

as We design the optimum quantizer for the density

9W Cia12 . A g(x) by finding the number of quantization LeveLs
gxC t1  , i - 1, 2, ... , M that must be assigned to each partition C • The

ThZ& UJOLk MU~4 pwen~ed at the 1982 Con6eAence oni n6o0 t Se eeA and SYg6.t ,

Ptiueeton Un..veAuiy.



first step is to rewrite Zador's distortion equa- We now have a method called piecewise companding
tion in (2) as for designing near-optimum quantizers for X given

p(x). With this method the support S is first par-

N k/k+r k rr/k t iboned into N regions and then each region is

D p C r N E ke quantized using an optimum uniform multidimensional
i1 j. quantizer with the number of quantization levels

specified in (7).

Second, we examine the minimum distortion 0i  in III Optimal Compnding

each partition C,. The distortion is defined as A number of important properties of optimal com-
1
A I - X)IIr panding have been examined in the Literature. Now-

i  k E(I - Q 9 - 2l X i) •ever, to the authors' knowledge an example of an
optimum k-dimensional compander has never been

We can write the density for each partition as presented. In this section we construct an optimum

1 2-dimensional quantizer using companding. The ex-

gi(x) -g(xcci) a ; XCi ample adds insight into the companding problem and

1 i suggests general guidelines for the companding

design of optimum k-dimensional quantizers.

; 4C * Bennett (63 was the first to use companding to

design a nonuniform 1-dimensional quantizer. The

Let Ni be the number of quantization levels as- structure of a typical companding system is shown
signed to the partition Ca. We note that the total in Figure 1. The input is first compressea by the

number of quantization levels is N and therefore

MR Ni N .(4) flx

i N UNIFORM -111- 15 QUANTIZER f Cx

Again using Zador's expression we find ---- 
X-

-r/k
= C(k,r) N i gi(_) Jk/k-r Figure I Typical companding system.

N r kr

Z C(k,r) N. 1 1 1
k +r ri) nonlinearity f(x) and quantized with a uniform

quantizer. The uniformly quantized value is then

m i rexpanded by the nonlinearity f 1(x). Bennett's
C(k,r)(.) (5) work was Later extended by Panten and Dite [7).

1 Panter and Dite derive an expression that can be

used to design the optimum companding functions

Since the density function of each part-tion is un- given the input density function and assuming N is

iform, we can achieve the optimum disto tion in (5) large. As a result it is a relatively simple task

by using the optimum k-dimensional uniform quantiz- to design a companding system for an optimum nonun-

ers described in [5]. The total distortion CT can iform 1-dimensional quantizer.
In (83 Bucklew shows that the companding design

be written as the expected vatue of the Ci/s in (5) can be extended to k dimensions. For k dimensions,

and thus the uniform quantizer in Figure 1 becomes the op-
timum uniform k-dimensional quantizer. Similarly

N the compressor and expander functions become k-
DT Pi pb dimensional invertible nonlinearities. Bucklew

shows that the optimum compressor and expander
functions must be conformal almost everywhere. As

M m it turns out, this restriction severely limits our

E PiC(kr)(
-
'"

r k 
" (6) ability to design optimum companding systems. How-

=1i ever, using the results of Section 1I and the idea
of conformality, we can construct an examole of an

Recall that D in (3) represents the optimum quanti- optimum compander.

zation distortion. Thus by setting DT  o we can In practice we would be given a density function
solve for the optimum assignment of the Quantiza- and asked to design the optimum compander. To con-
ionlvels m Oe oi u tignt is hstruct this example we consider the problem in re-
ion levels oOne solution is verse. First we choose a compander that satisfies

m. m
k /k tr  

0 the conformality constraints and then we find the

. m N k/ker r/k+r probability density function for which the com-

W pi IPi aj pander is optimum.
Let (U,V) be a random vector with the density

function o(u,v). For convenience Let the support

Nn pe k/k~r rtk~of p(uv) be the set S 
= 

((u,v): 1 < u
2 
+ v2 ( e

2
0

k/kin n/ken v > 0) as shown in Figure 2. Now consder the

N i  (7) 2-dimensional conformal map W s e
z 

where w = u + iv
ipker n/her and z + w C iy. We define The comeressor function

p1 
]

as



discussed above. Let Ni be the number of quantiza-
VI

tion levels contained within I . For N large, we

can consider the hexagonal quantization Levels to
be uniformly distributed within 0 < x,y < v. Thus,

Ni will given by the ratio of the area of Ci to the

total area of the square. If we let m. • ki Axayi H 1
be the area of C,, the number of levels N is given

by

...... Ni = kAxhy (11)

Not to Scale 1 •e

The expander function in (9) maps the Ni quanti-

Figure 2 Support of density p(u,v). zation Levels in C. into the partition Ci in the

W-plane. Since the mapping is nonlinear, the
-quantization levels will no longer be in the form

x =In V77-7 of a hexagonal lattice. However, the quantization

y = tan-1 V (8) will be approximately hexagonal when the area of C1
uj is small.

and we define the expander function as We now assume there exists a density p(u,v) con-
tinuous almost everywhere, such that the number of

.e
T 
Cos quantization levels Nt in (10) is equal to Ni.

(9) Thus for N Large and AuAv small, the distortion of

v a ex sin y the companding system in (8) and (9) is approxi-
2 mately equal to the distortion of the piecewise

The vector (UV) is sapped into the square X (O,,) compander. Setting Ni Z Ni we obtain
i =1

in the Z-plane by the compressor function in (8). 1/2
The resulting vector (X,Y) is quantized using the N kNAxpy a (2
optimum uniform 2-dimensional (hexagonal) quantiz- -2 1/2(
er. Then the output from the hexagonal quantizer pi
is mapped back into the W-plane using the expander 

j0l

function in (9). We now must find the density We can rewrite this expression as follows. As
p(u,v) for which this quantizer is optimum, stated above that the compressor function in (8)

We begin with a piecewise companding design for C'
the unknown density p(u,v). The support S of maps onto i for all i. Then by definition,
p(u,v) is partitioned into M equal-sized regions f J (u,v)dudv a f dxdy
Ci" each with area mi  AUhv. Using (7), the op- C. xy

timum number of quantization Levels for each parti- i
tion is given by

1/2 a ki AmAy

Ni= N14 1  (10) where Jxy (u,v) is &he Jacobian of the transforma-
p/2 tion in (8). Using this result and the definitionEp

j41 of pt in (10), we can rewrite (12) as

where 1 2 f p(u,v)dudvl1 /
2

P i  p(uv)duS J .,v)dudv m .(13)Ci x1 / 2xv ~ Cf P(u,v)dudv3
1
/

We implement the piecewise compander as follows. Ci C

First, we find the partition that contains the ran-
dom vector (UV). Then for each partition , Recall from section 1 that in the limit as

(U,V) is quantized using an N -level hexagonal M * a and *uAv * 0, the distortion of the piecewise

quantizer. companding system approaches the distortion of the

We compare this implementation of the piecewise optimum quantizer for p(u,v). We can also show
compander with the companding system described in that for this same limiting reLation, the distor-
(8) and (9). The compressor function in (8) maps tion of the companding system in (8) and (9) is

equal to the distortion of the piecewise compander.
each partition Ci  into a new partition C1 in the Therefore, the coapanding system in (8) and (9)
2 will be an optimum quantizer for the density p(u,v)

X (0,%) square of the Z-pjan*. The partition C that satisfies (13) in the limit as AuAv * 0. 0i-

i=1 viding both sides of (13) by AuAv and taking the
is then quantized using the hexagonal quantizer Limit as AuAv * 0 we find



p u ossible to design an optimum companding system

J y(UV) P - 9 s V. for all but a few k dimensional densities. This

f Pll(u,v)dudv further underscores the importance of the piecewase

S companding technique.
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optimum Laplacian quantizer later recomputed by Adams and
Giesler [4]. Max's algorithm is very simple to program into a
digital computer, and we view this simplicity as a good reason
for using his method. However, one problem that arises with
this algorithm is its failure to always converge to the optimum
solution when the number of quantizer output levels is large.
The reason for this is that the initial guess for starting the
iteration must be increasingly precise as the number of quan-
tizer levels becomes large. So, for a 64-level quantizer, Max's
algorithm will not converge to the optimum solution unless
the initial guess for the first output level is very close to the
true value. This difficulty has prompted others to employ
more sophisticated optimization methods in the solution for
optimum quantizers. For example, Pearlman and Senge (S1
use a vector space optimization technique that is a combination
of the steepest descent and Newton-Raphson methods to solve
for the optimum Rayleigh quantizer. It is not our purpose to
detract from this and similar methods that do work well, but
in our view, if the starting point problem can be solved. Max's
method is the preferred method of solution. In Section I1 we
discuss several methods for choosing the iteration's initial con-
dition very accurately, and we have demonstrated convergence
of Max's algorithm for at least 10000 output levels and pres-
ent numerical examples in Section Ill.

II. TIlE COMPUTATION4 OF OPTIMUM
ONE-DIMENSIONAL QUANTIZERS

A common method for implementing one-dimensional
quantizers is the companding method as discussed by Smith
161. The companding method is straightforward: the input
signal x with probability density p(x) first enters the invertible
nonlinearity g(x), called the compressor; then it goes into a
uniform quantizer over the range 10, Ii, and upon reconstruc-

A Note on the Computation of Optimal Minimum tion it passes through the expansion nonlinearity g- 1 (x). For
Mean-Square Error Quantize. minimum mean-squared error quantiza:!on, the asymptoti-

cally optimum compressor function is given by

J. A. BUCKLEW AND N. C. GALLAGHER, JR.

Abstact--Tbis paper considers the problems associated with g(x)--[- [p(y)J 113dy [p(y)j 113 dy. (I)
computing optimal minimum mean-square error quanlizers. Most
computational methods is current e are Iterative. Thee Iterative In Max's classic 1960 paper an iterative method is presented
schemes are extremely sensitive to Initial conditions. Various methods
of obtaining good initial conditions ae presented ad discussed. whereby the exact quantizer parameters can be computed for

finite N.

1. INTRODUCTION Max's algorithm provides a method for the solution of the
equations

In his classic paper of 1960, Max presents an iterative

scheme for the computation of one-dimensional minimum e= (y, + Y, - )/2, i = 2, -, N (2a)
mean-squared error quantization characteristics [I. In addi-
tion, he solves for the optimum Gaussian quantizer for up to and
36 output levels. In 121. Gallagher uses Max's method in the
computation of ollinim Rayleigh qluamtitter pawacitlcm, jmmd ["* I
in 131 Paez and ;Imhsoai u, the saine method 1) )om utc tIhe j x - r,)p(x) dx I, i : I. . N (2h)

Paper approved by the Editor for Data Communication Systems of- where the output levels of the quantizer are denoted y.I ,
the IEEE Communications Society for publication without orsl presen-
tation. Manuscript received January 5, 1981; reised April 27, 1981. Y2, "", YN and the internal breakpoints us I - C3, -, , NI.
This work was supported by the Air Force Office of Scientific Research Typically, endpoint values e1 and eN + I are known a priori and
under Grant AFOSR 78-3605. the first step of Max's procedure is to choose a value for yt

J. A. Bucklew is with the Department of Electrical and Computer
Lngineering, Univrsity of Wisconsin, Madison, WI 53706. with which to solve (2b) for the value e2 . We then use this

N. C. Gallagher. Jr. is with the School of Electrical Engineering, Pur. value in (2a) to find Y2 and use this to finde 3 in (2b), and so
due University, West Lafayette, IN 47907. on. The last integral over (eN, aN I) can be used to determine

0090-6778/82/0100-0298$00.75 0 1982 IEEE
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the accuracy of the initial guess for Y1 . If the last integral is p(x) is a zero-mean symmetric density (no Dirac delta fun,.-
zero within a specified error, we use the computed parameters tions), that N is even, and that a unique optimum quantiler
to specify the quantizer; if not, we make a new guess for Yt exists. The initial condition for the Max iteration is a guess for
and begin the procedure again. Details on how to modify the first output level greater than zero. We will call this level YN/2
initial guess fory, are not specified by Max. We first make the observation that the output levels must be

We have computed quantizers using Max's method for symmetric about the origin. Also, for large N, the distance *-o'

several densities. It has been our observation that the converg- between the breakpoint at zero and YN12 approximately
ence properties of Max's algorithm are greatly dependent on equals
the initial guess for yl. Let YIN denote the first output level
for an optimum N level quantizer. Intuitively, if the first guess 1I_

at YIN (call it ;IN) is very close to YI(N+I), then Max's YN

algorithm tries to converge to the N + I level quantizer. A 2
consideration of Max's method indicates that the first N steps
of the algorithm are the same for the N or N + I level quanti- The solution of this equation provides the initial guess for
zers. Although never reported in the literature, it is our under- YN12. This basic procedure can be used with modifications for
standing that this phenomenon has been widely observed 171. N even or odd with most common probability densities. Some

As an aside, we remark that the conditions presented in (2) numerical examples are provided in the next section.
are not sufficient conditions to specify the optimum quantizer; The second method uses the companding function to work
they are only necessary. However, in 1965 Fleisher 18] backwards from the known uniform quantizer over 10, I in
showed that if order to estimate the initial output level. In fact, the method

provides a reasonable approximation to the entire quantizer

d2  An N level uniform quantizer on [0, 11 has output levels
- Iin P(x)J < 0

J *= 2 , i= 1,"',N.

then the expressions in (2) are both necessary and sufficient 2N
for the specification of the minimum mean-squared error Therefore, the compand, r approximation is simply
quantizer, and their solution provides us with the unique
optimum quantizer. /2i- 1)

We now describe two similar methods for generating a good Y1 3g-, () = 1- 27)
initial condition. First, note that the initial condition can be a
guess at the value for y, or a guess for the value of any Y7, For the purpose of identification, we will refer to the first
i I, -', N wherever we choose to begin the iteration. The method of (5) as the A-approximation and the second as the
first method is a modified version of an estimation method by g-approximation. In hindsight these two methods seem ob-
Panter and Dite [9] and Roe 10]. The second method viouis; however, they have apparently not been widely used.
employs a companding model to produce the iteration starting
point. Both methods grow more precise as the number of III. NUMERICAL EXAMPLES
quantization levels N increases. Each method, however, In this section we provide some examples us~ng the A- and
requires computation to generate an initial value; the coin- g-approximations to estimate the initial input interval end-
plexity of this computation varies depending on the distribu- point of a Max quantizer. The asymptotically optimum mean-
tion of the variable to be quantized. square error companding characteristic is given by

In the first method we use the asymptotic level density
X(x) for the minimum mean-squared error quantizer. X(x)Ax X
is approximately the ratio of the number of output levels in J p(y) 1 3 dy
a region Ax about x to the total number of output levels N. L =9_(X)
This function is the first derivative of the compressor function f
g(x) in (i): J p(y)I/ 3 dy

(x) = g'(x) where p(y) is our input probability density.
1-i The first example we consider is when p(y) is the Gaussian

/3 p(y)/3dy ( unit variance, zero mean, _probability density: gt!x) is then
=P(x)13 y d( given by 1( + erf (x/V6)); hence, g- (y) = V6 erf- 1

(2y - i). XUsing this equation, our expression for the initial
Smith 16] shows that this function has the property that for positive in ut interval endpoint of an N output level quantizer
adjacent output levels yj and Y1+ 1, isx,= 6erf(2(N/2+I)- I).

The ?,-approximation requires us to solve the equations
(using a standard Newton-Raphson search)

Y Il -YOE.. foryE[Yj, YjI1i (4)
N)(y) ___

X Ix I - for N even
when the number of output levels is large As an aside, we NA(xiA)
remark that our compressors always have unity range. Smith
allows more generality in his formulas. The best way to il- Xt - , forN odd
lustrate the use of (4) is through an example. Suppose that 2/vA(x)
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where

(Xl.) =(2w) 1xtl" .) 
"

Since Max tabulated the actual values of the input interal .2".....
. . .

endpoints, we may compute the quantities /

I t! l

0

and
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Fig.. PFIg. S (solid line) and (dotted line) plottedasa function of N
orthe Gaiafor the aylehigh density.

for various values of N where xa t is the actual tabulated

value.leeshvbencmuefothGasinadRyig
In Fg. weseePt sold Lne) nd X (ottd lne)ploted probability densities, respectively. In practice, we find that

safIon I V wesesoli lne) and PN doted line plottye both methods give sufficiently good estimates to &Hlow quicks f taoe the acftr value s of from tho i ut i ayt e convergence to the correct quantizer. A typical value is 200
seen ot s, the rore, the -approxim ette for aothee iterations for c m000 lve Gauian qantizer with the lst

a u s s u iof N .to r th e -a pprxi tion d e s o t have level specified to 10 - $  accuracy. W e conclude that the xt s

a solution Ffo 3. = ( i niche )i an al ( l pproxim ation in m ost cNs, but the x
thisapprximtionin lw Nregins.estimate is often substantially easier to compute.We now perform the same computations for the Laplucaan

Vp(y) = exp {-p yi t /2) and Rayleid e(sy) = y exp e-ys peERENCpES
2) probability densitie In Fig. 2 we plot P (solid line) and (IdI J Mabt "Qumo tizin for minimum distorion," IRE Tras. inorm

Pa (dotted line) for values of N from 5 to 366 for the Laplacian Teory, vol. IT-6 q pp. 7-12. Mar. 19 v.
edensity. Aarti, the f-approximation is best for a values of N 2 N.C. o allgher, "Optimum qua1t0ivion in digit holography,"
and, furthermore, the X -approximation has no solution when Appi. Ope., vol. 17, pp. c9-1cy. Jan. . 19t8.
a = 4. 131 M. D. Pat z and T. H. limon, "Minimum ase-q error

)probabilitydenties.In Fig. 2 we plot Plo S (solid line) and Pl ( d Mquantization in spfech CM ed DioM systems. IEEE Trans.
' InFig 3 e se pots f~ t (sod lne)and A (ottd lne) Commun., vol. COM-20, pp. 225-230. Apr. 1972.for values of N from 2 to 36 for the Rayleigh distribution. For 141 W. C. Adams and C. E. 0ieder. "Quantizing characteristic tat

every value except N a 2, the -approximation is better than signals hfinN Laplacin amplitude proba ility density function,"'
the u-approximtion. The plot of Pt is noisy because calcula- IETrans. Cotiu.. vol. COM-26 pp. 1295-127. Aug . 1978.
tion of x is for this density requiDed a large nT.merical iqtIp- 15) W. A. Pearman and O. H. age, "Oiniml quantization of the

Rayleiih probaecility dstributiMn," I EEE Trans .onia- vol.
tion which was very sensitive to the number of samples used in COM-27, pp. 22--.2A Jan. 1979.
the summation. o 61 B. Smih. "nstaaneous cniaiea of quantia d sira." fell
tWe should note that Max quantizes have been computed Syst. Tecn. J., vol. 36, pp. 653-709. May 1957.

for the Rayleigh and the Gausian densities using both XIA and (7] E. DIlp and J. A. Bucklew, mutual correspondence, 1977.
181 P. E. Fleisher, "Sufflcient conditions for achieving minimum

xls as the estimate for the initial interval endpoint. With no distonion in a qoantimr," in iEEE Inc. Coxy. Rec., 14. pp
convergence problems, quantizers of 10000 and 200 output 104-111.
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sp.lial alttetion i dircted 1o the Case where thle iW iilWAs6 is a and since the resulting prediction scheme never requires siti

p.,tsimiSi Also, a noniieraite approa bawd on immli0Anr regRre%,ion i% cal knowledge of the random process beyond that contained in
Prewntd. the family of bivariate distributions, a nonlinear predictor ,4 thi,

type sce s reasonable.
1. INTRODU("JON In Section 11 we consider some case.s where (he optimal -. .. e

In this correspondence we consider a second-order random mate has the form of (I). In the general case. the optimal

prtess Pi,, - 1.2,. . and we are interested in predicting predictor will not have the fornn of (I), and thus a predictor ,I

the random variable f'. !rom an observation of . ' this form will he suboptimal. This situalion is dis,.tscd in

Our estimate is denoted by ,.,, i. and we wish it choose it so a Seclion I1, where an iterative schene is pre.sented fo, dci'Join
to fminimizire th'" nian-.•quared error. ing suboptimal predictors. In Section IV example,, are pi.en to

It is well-known f1. pp. 77-781 that the optimal e•timatc of illustrate the method Finally, in Section V a nonitei aiic .p-
X.¥- , in terms of ',- . X.. is given by the conditional expecta- proach utilizing a modified ZNL structure is considered
lion If. OTIMA. PRI-ICI ION

i,., E{ X, . X., . . X, ) In this section we consider sonc cases %here the optim.l filter

In general. th s is a IWorcl measurable function of V ,. X,. In has the forn of 41). Whenever the optimal filter is l ir. thn il

many cases an exact expression for this quantity is difficult it obviouly has the form of (1) with q(%) -: v. The (.-h . t
obtain Often we do not have the necessary statistical information spherically invariant random processes 141 admits linear ,olution,.
to evaluate such quantity. In such cases, we might restrict the with the most well-known examples being the Caussian ir"',,.
form of the estimator to be linear and apply well-known tech- a is clear that the performance of the filter givewan h% 1 Ill
niques 121 for its determination. Linear estimation can also be always be made at least as gotid as that of the optimal liniCi
thought of as applying the projection theorem 1I. pp. 1() 1551 filter. In some case.s the filter given by I1) can be optimal %hlilh
and projecting X, onto the linear manifold generated by the the optimal linear filter i. useless. For ex.niplc. let %, I' 1
observations X... Clearly, in this case the only statistical where U is a random variable uniforml., distributed oser I.
information required is the second-moment characteristics of the and P,,() is the nth Legendre polynomial [15- In thi., c,,c. ilc
random prsees. sequence ., n -I, 2.... ) is a sequence of unorrclatcJ icr.,

n apro. imean random variables, and the optimal linear filter iicids anIn an attempt to improve estimation performance. we propose

it modify or augment this subspace so as to have a larger signal estimate which is zero, However. for g( . P. . i and
component present vithin the subspace. A linear nclhiod cannot 4 = (1. it s I
alter the subspace in tie manner required it achic\t the desired h,, 0. D N
behavior: however, a nonlinear system can modify the subpace
So. we begin by restricting our estimate X\ , to be of a form that the filter of (1) gives the estimate X . NuCrOu.,

is expressible as the output of a system consisting of a time-in- examples similar to this can easily be constructed.
variant zero-memor,, nonlinearity (ZNL) followed by a linear When the process is a (first-order) Markov process, it is s'.ell-

filter The ZNL is characterized by a Borel measurable function knownfl. pp. 81 -83) thatl X , I ) X%.. -.... ". .. LIX , : \,
ic-) such that ....g(X..) are seond-order random vari- with probability one (wpl). Thus a system of the form oft It 1ith

*~~ suc tha ZNL give by gix = E , X, a= seod-re rando a cables We can now form our estimate of Y, i as a auNL given by g ) = -(X , ,V A" x} and a weightig
linear combination of the g( X,) by projecting \. , onto the .equence given by
linear manifold generated by the modified observation.s . I. (
g( '). - .xl X, ). If the weighting squence of tihe linear filter is = O. 0 - )

l given by It,,.- - .h ,. then the estimate is given by
will yield the optimal estimate of V'.

Markov proccsses serve as models for many phis .a ph•''ico-
"g(' ,. (I) ena that ar'sc in practice. Often they are obtained as iw si , -ii

if i of first-order stochastic difference equations of the fori

We wish to determine a function ( -) and a set of coefficients , g(A'. ) + Z,, t .1.2.
It_,--.h o that the resulting mean-squared error is mini-
mi ed and is at least as good as that of the optimal linear filter, where -) is a Borel measurable function and the sequtn ,
Similar system structures have been employed in ccrain dc.c- is a sequence of zero-mean independent randoii %arwalic, aat
tiin applications 131 are independent of the initial condition X,, It is casili, .sn hal

We note that the purpose of the linear filter is simply to in this case we %ill haschei:., ,i A'. , Xi) q( A. 'A p1
implement the projection operation. The purpose of the ZNL is Clearly. for any random process for which
to modify the observations in such a way that the resu1lting linear
manifold contains a large component of . . . so that the error P . I . " . - ( x , d

associated with the projection is small. We note that in working ,,
with a nonlinear system of this type, no statistical knowledge of
the random process beyond (hat contained in the family ,of a system of the form of i1) will produce the optimal eihmiaic or
bivari-te distributions -%. ever required. In sonic cascs even less -'% , , As another cxample of a proccss foir vhich the c,,nditioil
statistical knowledge suffices. For example, if the /NI. is chosen cxpctation has the form of (2). consider the proccss geici., h,,
io h a polynomial, then the required statistical knowledge of the the following second-order stochastic difference e'quation
random proccss reduces to the family of certain joint higher order ,, -h (;,, ) h.g( ., ) , 4 .t .
nomlent% of the random process.

Since we know onl, the second-moment characteristics of the I t' 0. 1. 2. (4
random process. the widest class of systems over which we could where .g( -)s a I ,orcl measurable funcion and / /.. i ,,I ,l,
topltiilllc is the clas of linear systems. Thus, it do better than i i f /ero-nicn indel- id t random vaiuables nd c . .,j i)

p.,,,jblc using linea prediction, we must have imoic statist ial la , and A,' h can he vasil, scin tllt t dii.
kmiwledge of the random process than it% second-imoimient char- txiti. coiin V nt
icteri.stis. Therefore. since the ZNL serves the pumpos. of mod e . for an N 2.
ifing the closed linear manifold onto which A.' is projected, E( X' . i .( .% ) h ,( \t % n pl
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Extension of this example to the case where (3) is a k th order necessary statistical information would consist of the higher order
stochastic difference equation is obvious. joint moments.

The next step might be to minimize (5) over the A K
Ill. SUBOPTIMAL PRE)ICIiON parameters. This would result in N + K equations of third-order

In the general case there will not exist a function q(.) and a polynomials in the parameters. This simultaneous optimization
weighting sequence h....,hN I such that (2) is satisfied. How- over all the parameters presents potential numerical probleinm As
ever, it is quite reasonable to conjecture that in many cases it may an alternative to the simultaneous optimization over all the
be possible to determine a filter having the form of (I) with a parameters, we describe an iterative technique.
mean-squared error either significantly smaller thain that associ- The basic plan of the iterative technique is to consider the iso
ated with the optimal linear filter or very close to the mean- sets of parameters separately and to iteratively optimize over one
,squarcd error associated with the optimal filter. set of parameters while holding the other set fixed. This iteratie

If the function g( • ) that minimizes the mean-squared error is technique results in the need to solve systems of linear equations.
known, the g( X) will be well-defined random variables and the a.s, opposed t,) the need to solve systems of equations in Ihird-,)rdvr
determination of the h,, that minimize the mean-squared error polynomials such as encountcied in the effort to simultaneous,
reduces to an application of the projection theorem that Is optimize over all the parameters.
stting We will assume ihat the parametric form of g( ) is such ithat

with the proper choice of parameters we could have g( .) - % int[ N 1 t this way the ncan-squared error that results %ill always be tipper
E i - h ,g(m ) g( X) 0, 1 , -,..N, hounded by the mean-squared error associated with the optimal

linear filter.
(4) The iterative technique is as follows.

and solving for the h, To carry out this step we need to calculate Step I: )etermine the optimal weighting sequence h,
the term. (g( ,jg( A' )) and E( X, , ig( X,) 1. In practice. te h , , for the case where g(x) v.
determination of the function g(.) that mininizes the mean- Step 2: For this choice of h ,, - - ..h , determine a,....a,
squared error is a difficult problem. so as to minimize the mean-squared error.

Notice that. in the optimization problem where the filter is Step 3: For this choice of a,,..., a , determine the optimal
constrained to be of the form in (I), only second-order informa- weighting sequence h,,. - ..h .
tion (i.e., the family of bivariate distributions) is required. This is Step 4: Repeat Steps 2 and 3 until the improvement in the
more statistical information than would be required if we were niean-squared error is negligible.
doing optimal linear filtering, which requires only econd-mo- At each stage of execution the algorithm provides a system design
ment information. However. it is still considerably less statistical whos mean-square estimation error is no larger than that for the
information than would be required if we were doing optimal previous step of the algorithm.
filtering, which requires statistical information pertaining to an The a.... .a, and h,, ... hv , that are obtained in Step 4
(N - )-dimensional distribution, after the termination of the iterations determined the s)stemn.

In order to circumvent the difficult problem of determining the Step I and Step 3 make use of the projection theorem and result
function g(.I to use in (I), we will sacrifice some degree of in E(Xn,,g( X,)) = Y.' hn E(g(X.)g(X,)). j t..
optimality and parameterize g(. ). thus letting the determination Step 2 make. use of (5) and results in
(f (') simply depend upon finding the correct parameters.
Doing so., we then write the resulting mean-squared error as a
function of the parameters associated with g( -) and the weighting % A ,hN I
sequence of the linear filter. In this case, the mean-squared error ,- I /
would e a function of K + N parameters, where K is the number K
of parameters associated with g(. ). For example, let g( be given 2a, :'{ h,(X)b(Xi)) + I uaE(h,(XjbhXi))J

A P./

A a,b,(A).

I 'len ou t ,ih i.* Ij g i. .-. A|s
SA 11IV. 

FAAMPI L.S
h , , In this sectin we consider a particular parametric form for the,,S I / , ZNL and a specific model for the random sequence. The iterative

method described earlier is used in this case to determine a filter
and the resulting mean-squared error is given b of the form of (I). We also determine the mean-squared error

I'{[,~ , ,.,} resulting from use of the optimal filter and that resulting from
X, use of the optimal linear filter. Performance results for these

V. A filters are compared, and it is seen that in several instances the
t X, I h, ,,, I '{ A , ( .;,) } improvement in mean-squared error of the suboptimal filter iver

that of the optimal linear filter is a significant traction of theA A corresponding iniprovement of the optimal filter over that of the

I V 5 ' h' A,, h,A ,,,a P,:',(.',),(X,,d). optimal linear filter.
Assume that we have knowledge of the regression function forstationary (j,,):

(5) r(x) = E(X 1 X,, x}. (6)

l'h functions bl. should b determined so that there is
onsiderable flexihility in the functional form of y( ) and al,,o S, Notice that if we choose g(x) -r(x) and

that the expectations in 5) could be determined from the satisti- 1, u=O
cal infornation at hand. For example. if b, % I t '. then the A,, = O. .

I
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twn the estimate would he the same as that of the optimal filter where the c, are constants that can be determined using the ahosc
hased on the most recent observation. If we were to use the procedure. Thus we choose the ZNL g(-) to be
protection theorem to choose a different weighting sequence 9+1
(h.,}. we might do better. It seems reasonable to expect that if we 2, = ( ii/

2
q 11

were to parametertze g( ) so that by proper choice of the parane- Ax) = ,(x)'
tr we would have g x) = r(x). and then to use this parameteri- 4 =
tation of the ZNL in the iterative technique described earlicr. we where the parameters a, are to be determined by the iteratie
might determine a system of the form of (I) exhibiting very good procedure. In utilizing the iterative procedure we encounter the
performance. This is how we will choose the ZNL in this section. need for the knowledge of moments and joint moments of (Z,,}

As a model for the random sequence ( X,. n = 1. 2. ) we (see 171), which are given by
assume that / I • 3 • 5 -.. (p - I) for p even

X. = (Z.)' '
. (7) E{(Z 1) , O. for p odd

where (7,. t = 1.2. ) is a zero-mean stationary Gaussian E{(Z,)'(7.,,)
* process with unit variance and autocorrelation function p(.).

I irsi we derive an expression for the regression function (6) when = (r, s. i)* ' the random sequence is given by (7). Using results in [6), we have
that [(r + s -l)p(fi)p(r- 1.s -1,i)+ (r -1)(s I

L-(X%."IX% =E((Z'" 1)
2qIIZ") = (I-[p(i)]2)/U(r-2, s-2, ). for(r+s) cen

0. for (r + s) odd.I- J p(l)]J,.o.(z,) (

QC Observing that j(l. 1,i) = p(i) and #( 2.2 , i) = I + 21p(,)'. all
I [p(l)1 0b09(x, ) ''' "). higher order joint moments can be calculated using (9).

,=0 In order to compare the performance of the suboptimal estima-
tor with that of the optimal estimator, we have obtained expres-%, here the series are mean-square convergent, the constants h,,) sions for the mean-squared error associated with the optimalare given by estimator. For the optimal system we arc interested in

b,, f(x)2v 0.(.)expt , - ),. d ()E(ZN+ ) I Z,.-.

and 0, is the nith normalized Hermite polynomial given by Notice that this is the (2q + I) conditional moment, and the
conditional distribution has the functional form of a Gaussian

C distrfibution. nus. the minimum mean-squared error follows using -
,, .,) -1- . standard properties of the Gaussian distribution (see. for exam-ple. 181). For q = I we find that the minimum mean-squared error

We see from() that I,, = 0 for to ->2q + I and. in fact, the b,, is of the form 15 - P19E(Y2) - 6PE(Y4) + PE(Y)I: and
can he obtwncd from the relation for q = 2, the minimum mean-squared error is of the form

2 q 1 945 - P6[225 E(Y 2 ) + 300PE(Y4) + 130P'E(Y) +

(X )' X ,20P 1 E(Y") + P4E(Y'0)]. In these expressions P, is a constant.
,, 0 and Y is a normal random variable with zero mean and variancer A,. The constants P, and y' are defined as follows. Assume

Fo~r e anlplc, for q - I we have without loss of generality that the correlation matrix R associated
3. n = I with Z,. • • .. , is positive definite (if it is not. the data can he
r 6 n = 3 reduced to achieve this result). Then P, is the reciprocal of the

element in the lower right corner of R- . Denote the first V
0, n :# 1.3 elements in the last row of R as r. ,,. Then

and r( is given by rtx) = (p(l)lt x+ 3p(ll(i - ip(l)).,i/.* .v N-I
F r 2. 2 (, + 2 p (.,, .... N - ,it).

Is. = I The mean-squared error associated with the optimal linear filter
106 n 3 can now he obtained in a straightforward fashion

it,, , In Tables I-VIII results are presented comparing the subopti-
, 2130, -mal filter to the optimal filter and the optimal linear filter.I0, if o 1. 3.5. Several correlation sequences for (Z ) are considered, both the

third power and the fifth power of Z,, are used as models, and
examples for two observations and five observations are given In

r( p(, [I l)]', 4lJp( )]'(I - Il( )12 )" these tables L,, L. and L,,, are the mean-squared errors rcuting
from the optimal linear filter, suboptimal filter using a ZNL. and

+' ' the optimal filter, respectively. The quantity n, is the percent of
+ () (decrease in LI when the suboptimal filter using a ZN. is eim-

II cncral. for an arbitrary positive integer q. it is asils s en that ployed, i.e, to, -- I., - I.)/ILi The quantity I, is the per-
' hais the form cent of possible improvement in I., using the optimal filter ..L

I., ltX I., - I.,,,, )//.,. The quantity i, is the normalized, . .i) q' h %, ,( )., '., percent of improlement over the linear filter given bN the subop-
tinal filter using a ZNL, i.e., n - l(K) ,/n: I ( I.,

) I i.'l ' I
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TABLE I TABLE V
C'oakLA I.ION SEOUkNC&S ORRkSPONDINu TO TAI.LS II -V COb irkClNIS a, Ok ZNL .r5) = 1, I,

AND Il, 01 SUDOPrIMAI. SYS iLM tOR q 2

1 .75 .575 .43 .388 .291 h 1  h0 f3 I 4 h *h 4"
2 .881 .7"8? .70762 .639 .53805 .479 .0119 .0063 .0042 .00S? 4.052? 3.77?? .495
3 .5S .315 .167 .1144S .07183 2 .7065 .009? .006? .00S .0095 .F156 2.032 .7585

4 .55 .S95 .519 .2688 .23025 3 .2563 .0059 .0028 .0017 .0014 15.173 4.5019 .196
3 .426 .27 .14675 .09448 .0620? 4 .2466 .04?2 .028 .019 .017 11.735 4.465 .1966
6 .8333 .6666 .5 .3313 .166 5 .162 .02?? .009 .0043 .0026 23.ISS 3.802 .0859
? .5787 .2963 .125 .33? .00465 6 .6534 -. 034 -. 0234 -. 0136 -. 024 2.742 2.9562 .6502
8 .462? .1975 .062s .0123 .000?? 2864 -. 016 -. 0096 -. 004 .0002 14.7841 4.3769 .226?

8 J.2032 -. 0139 -. 0065 .0019 .0008 22.373 4.266S .128

TABLE 11 TABLE VI
.%It A. -SUAR ED ERRORS AND KIRC LNTAG ES Of IMPROVEMLNi 1 1-01

MFN-QUC A I ORRELATION SLQU1,NCS (.ORRLSPONDING TO TANI I:s VII, VIII
L (I 1) 0(2)I -

L 1 2 q3 1 .9 .7

1 9.1985 8.8614 a.8381 3.6 3.69 97.3 2 .8 .5
Z 3.1744 3.0622 .0S99 2.16 2.21 97.6 5 .8 .3

S2.5987 12.10864 12.106 3.89 1.09 99.3 4 .7 .1
2 1.3196 11.9216 11.8952 3.23 3.44 93.?

5 1.6849 1.297 13.293 2.84 2.86 99.1
6 6.9247 6.6228 6.4926 4.56 6.23 69.8
, 12.203 11.732 11.72S9 4.54 4.59 98.8 TABLE VII
8 13.S219 12.8142 11.812? 3.91 3.82 99.6 TOBE t ENT u, Ou Z.NL ,E(v) = a2. + a, 0 Asi) h, O

SUI1iOPIIMAL SYSIEM FORq I

TABLE III h0 1 *1 42

M8kAN-WsQARD EKORS AND PkR( ENTAGES OF IMPaOVEMLN I F OR 1 1.2377 -. 494 .9333 .29852 " 2 .9853? -. 001 1.6639 .6923
5 1.093 -.6467 2.198? .6089
4 .7927 -.476 3.2912 .4545

1 77.42 704.38 704.22 3.13 3.18 98.1
21 45.78 444.78 444.49 1.98 2.04 96.?

3 867.49 59.93 839.9 3.1 3.1 9.7 TABLE Vill
4 5V.44 934.59 831.86 2.82 5.13 89.8 MI:AN-SQUAR.D EARORS AND PERCENTAGES OF IMPROVEMNT itOR
5 9M0.95 899.7 899.43 2.3 2.33 98.56 S14.51 $$4.58 550.99 3.41 5.74 S9.3 "

7 116.33 84386. 043.24 .4?6 3.34 9??
6 91J.66 .4.38 33 .42 2.1 3.9 .Z L I L L in q, q q

t[ 1.487 J.49 J.1354 6.7v 16.1 42.0|

2 1.566 ?.0273 6.7406 ?.12 10.9 65.S2

3 .7804 4.371 1.0251 24.38 82.3 29.62

TABLE IV 4 8.9823 7.1689 4.9674 20.19 44.? 45.16

(OEIICIENTS a, O NONLINEARITY g(.1 ) = UJ,. r Uj' AND h, 0M
SUiOnIMAL SYSTEM OR q= I variables uniformly distributed on - 1/2. 1/21. Letting g( .x

h0 "1 2 1 h *1 (" f I + 3 .wC see that it is possible to realize the best
predictor with a nonlinear system of the form under considera-

e .789 .0084 .064 .0051 .0152 .64 .62 tion. We took N - 2 and empirically estimated the expectations
1 .4,116 .UI9s .0049 .0029 .9024 1.?606 .414 iN.'.turring in (5). After one iteration of the algorithm, the empiri-

5S4 .0687 .0413 .029? .028 2.47491 .43'4-
.281 .047 .0164 .0076 .004r 3.W779 .265-s caly estinated mean-squared error was reduced from (.085 to
.7? -. o~s' -.0173 -.0111 -. 0662 1.101S .6s ).(XK) I
.4476 -.021 -.011 -.01 -.0035 2.775 .431

.133 -.027 -. 0321 -. 003t -. 0037 3.342 .921,% V. AN AI.r1KNATE DESIGN APPROACH

In the preceding, we considered an iterative procedure for the

As mentioned earlier, the functions b(.) should be determined design of the nonlinear predictor. In this section we will consider

that onsiderable flexibility exists ln the functional form of a genralization of that concept which results in a noniterative
thaFonea le fleibiity xs. ihnero .then choosing procedure. Recall that the purpose of the ZNL was to modify the
) For example. if X,. I has a nonzero mean, then c oshng linear manifold onto which X., Iis projected. The purpose of the

hiracted out and thus decrease the mean-suared error. In this linear filter was simply to implement the projection onto the
,c. f'or example. Step I of the algorithm should be replaced linear manifold generated by g( X1),. .g( X.). li the ZNL were

fthe alotml whtg eqece allowed change, then the possibility exists of choosing the ZNL
.th the following: determine the optimal weighting sequence

.. 'h for the case where g(x)= x + I. In this case. Step such that a larger componen of X., I lies within the linear

,A ill result in the best affinc filter (i.e.. linear plus a constant), as manifold spanned by its output.

posed to the best linear filter In the earlier case with a single ZNL we have sacrificed sne

As we also mentioned earlier, the functions b,(.) should e degree of optimality by parameterizing the ZNL and then letting

:,,sen such that the expectations in (5) could be determined the determination of g( .) depend upon finding the correct

-in the statistical information at hand. To once again test this parameters. In this situation, the mean-squared error was a

cilhod of nonlinear prediction, we simulated the following dif- function of N + K parameters. If we now allow for , such ZNL's

ence equation driven by white noise and empiric.ally estimated in the system, then the mean-squared eror will he a function of

c necessary N A ) parametcrs. It may appear at first glance that we hae
erenow made the problem much more complex, due to the introduc-

, = - I.74 X,1 + 0.00SU, , tion of more parameters. Hoever, as we shall see shortly, this
alternative approach will result in a noniterative design proce-

icre the sequence (U.) is a sequence of independent random dure.
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With V% ZNL',\ the estimate is given by If the actual moments and cross moments had been used in the
V noniterative procedure. then for this example the exact minamum

A'
5  

~ g,( x, )hmean-sq4uared error estimate, given by
= - 0.87 + 1.74 X2 + 0. 13 X,

% here V i.NI.s arc given by would have resulted. The resulting mean-squared error!. were
X empirically estimated from the simulated quantities and are given
i~,Ax) u.,h,('1.by 0.003503 and 0.000 05 for thc iterative and noniterative

I procedures, respectively. The actual minimum mean-squared er-
In tis ase ifwe et ,,, a~,,. ~, hentheZNL~ culd ror for this problem is 2.5/12000 =-.00O02083.

he replaced by VI. SUMMARY
X We investigated the design of nonlinear discrete-time predic-

ii,,( 4.,) ~ b, ( x. tion filters. We motivated our approach through the concept of
I modifying or augmenting the subspace generated by the obsera-

and the linear filter could be replaced by an accumulator, and the tions in such a way so as to have a larger signal component
mean-squared error wkill be a function of AK parameters. In the prcsent within this augmented subspace. The form of the system
sequel swe will take this approach. Thus our estimate is now of the under study was that of a zero-memory nonlinearity followed h.

ft ,rilIa linear time-invariant filter (ZNL-LTI). We have shovun that in

N A. many cases, where the optimum nonlinearity is known, the ZNL-
a,,,h( X,,, (l T I structure produces nearly optimum results. Finally, an exten-

a. X "(0 sio to the use of several ZNL's was considered.

And we wish to determine the parameters (a,,,). The minimum REFERENCES
awant-squared error estimate of this form is given by protecting III J L. Doots. Stwac Proorsses. New York: Wiley. 1953

X, onto the linear manifold generated by the NK random 121 T. Kallaih, Ed., Linear Least-Squitre Esimation Stroudsburg. PA.
sarible {h( X,)(Thustheparmetrs a,,, ar gien s a Dowden. Hutchinson. and Ross, 1977.

%oluion~c to(,) hsteprmtrs(,, r ie %a 11 J. H. Miller and J. B. 71homnas. "Detectors for diseoe-iinu signas in
soluton tonon-(aiAnsw notse." IEEE Tram. Informa. Theory o- 11ot Ii N. pp 241 -

BA (* (II 141250. Mar. 1972.
BA C.(1) 11I. B. Make and J. B. Thomas. -On a class of processes .,ring in line.,,

where .4 is a AN-dituiensional column vector of the parameters Jsatn hoyI& rn. lr le'- ot T 4 2 b

la_,,) ordered lexicographically, 8 is a KN '/ KN matrix whose 151 MI. Ahramnowitz and 1. A. Stegun. Handbook of atohemaical lin,,si,
generil termi is of the form E~b,(X,)b,( X.,)) where the lexico- New York: Dover. 064.
graphic order of iandj/ denote the column and the lexicographic 161 "1 L. Wise and J. B. Thomas. "A charactermation of Markov beuences.-

of row, aJ. Fru,,Ah li.. voll. 299. pp. 269-278, Apr. 1975.
order ofA and o)denotes the ro.and C is a K-dimcnsional I 71 N. L. lohinso and S Kou. Darribuan;s in Statistics: Conranstcia Multi- ftwo

volumin %ector made up of the terms E( X, , , X,,)) ordered e'ariate D~silain New York: Wiley. 1972. p. 91.
lesicographically i and n. We note that if the parameters (a,,,) 191 K. S. Miller. Multnmonsjal Gaussian Distribauons. New% York. W&%.
4re such that (11) is satisfied, then the resulting estimate given by 1964. pp 21-22.

10) is% the minimum mean-bquared error estimate, and by the
prt;ction theorem it is uniqucly defined up to probability-one
cquisalence. That is. more than one solution Ito (ll) may exist,
however, for anN number of solutions to 111). the resulting
V'st1itIdtc% are all eqtial with probability one. Also, the projection
iheoicem guarantee% that at least one solution to) 11Il exists

As a specific example. we might choo-se b,( %) x I. In this
ka~c. the matrix ft will consist of various moments and eros-.
ai~murtis (if the set (if random variables.

ft)o atipare the two methods, we simulated the following
kfiflerene: equation:

V., ; 57 + 1.74 X,2 t). ox,, . .51.,,

ssliere tile U~, were independent random variable% uniformly dis-
iributed over 1- 1/.2, 1/21. We set N =2. K 3. andht

t,'1 he necessarv moments and cross moments. were empiri-
%.jllN estimiated from the simulated quantities. The iteration pro-
cedure using a single ZNL yielded an estimate given b)

0).403677g( X.) 0-t.O0354X)i( X,)

where

.4 1 t- 0. 09741 K 1.956364.%

- ~ ~ tic nottiterativc proc-edure using N ZNI.' Nielded an estimate

1 0 5211510 it 10400X3X f .7420K6 A:

+ 0. 132142.V, IOAtltl 10XI'.
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The Design of Two-Dimensional Quantizers
using Prequantization

KERRY D. RINES, MEMBER, IEEE, AND) NEAL C. GALLAGHER, JR., MEMBER, IEEE

Ahsimcf-T'ni theoretical Wantgs of tw..dimenional qumutialion The design of two-dimensional quantizers for optimum
over univaniate quaniuiationt have been %tuniid in the literature. However, quantization is one area of interest. Consider the random
in mauny caw%~ there is no known inspleasentiosi for the hto-invensionaf sequence X, I-X2 , X3 ,.. where the x, are all independent
quaflhller thai can operate in real lime. A new approach to the design of

tivuifinenvo s qur"U is presented. 1Wis techtnique. called prequanm. and identically distributed. The traditional approach to
ration. i% used so design two-dimensional quantiter% thmat operate in real quantizing this sequence is to perform the quantization one
ulnic. Tive importance of preqmaantizaaion is detnoorstriaed b) the design of sample at a time using a one-dimensional quantizer. Much
she optimum "nform two~dimemional (hexagonal) quanlizer. Aditilinal of the early work in quantization theory has addressed this

* elxanpe% wre given to illustrae the flexiibility of shi% de~ign approach. problem. As a result the design and implementation of

1. INRODUTIONoptimum one-dimensional quantizers is straightforward. In
I. INRODUTIONaddition these quantizers are often able to operate at high

T HE USE OF two-dimensional quantizers for encoding source rates. These properties make one-dimensional quan-
analog sources has been of increasing interest in recent tization an attractive choice for quantizing the above se-

years. Two-dimensional quantizers can offer advantages in quence. The advantage of quantizing the independent iden-
the design of both optimum and suboptimum quantizers. tically distributed (i.i.d.) sequence in two or more dimen-
These advantages may be offset by the difficulty in imple- sions is discussed by Zador I I]. Simply stated, these results
menting many two-dimensional quantizers. In this paper indicate that the minimum obtainable per sample distor-
we present a new approach to the design of two-dimen- tion decreases as the quantizer dimension is increased.
sional. quantizers, called prequantization. We show that for Therefore, the potential exists to improve the performance

*a number of examples prequantization simplifies the of digital encoders by replacing one-dimensional 4uan-
quantizer implementation and/or improves the quantizer tizers with two-dimensional quantizers.
performance. Zador's results include derivations of both the upper and

lower bounds on the distortion obtained when using an

Manuscript received Feb. 19, 1980:~ revised March 12. 19111. This work optimum quantizer. Unfortunately, these results do not
*asupported by the Air Force Office of scciuific Reseasrch under Girant provide insight into the structure of the quantizer. The

AFOSR 71-3605 dsg n mlmnaino piu w-iesoa
K. 1) Rimes was with the School of Electrical Engineering. Purduc esganimlettonfopmu tw-mninl

Universiitv. West Lafayette. IN. He I% now with The Analiviic Sciscncc. quantizers, remains a largely unsolved problem. Recently
(OrporaItin. McLean Operation. 11301 (,recn.boro Drive. Suise 12(X, the design of two-dimensional quantizers has been ad-
M4cicn. VA. 221t02. dressed. Computer algorithms for designing optimum

N. C. 6iaIIlier. Jr. is% with she School of Electrical Enginering1, q tzr ftoo oedmnin aebe rsne
Purdue Univcrsssy. West Lafayette. IN 479l07.qatzrofwormredenishvebnpeetd

001 8-9448/82/0300-0232$00.75 0 1982 IEEE
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by many authors, such as Linde et al. 121. The algorithms
specify the optimum set of output vectors for the quantizer. PEQuNtIzER- QUATI

The optimum quantizer can then be implemented using a QUANT'ZER

search procedure. Having specified !he output set, the
* earch is used to choose the output vector that is the Fig I TA(o-dimcnsiona1 quantizer de'.ign using prcquanittation

smallest distance from the input vector. However, this
implementation of the optimum quantizer may be difficult quantizer using a search procedure. Let the quantizer to be
or impossible to operate at high bit rates. Thus we are left designed he described by a partitioning of the input space.
with the following dilemma. We can use a one-dimensional where all the input vectors contained within one cell of the
quantizer that is easy to implement and suffer a high level partition are mapped to the same output vector. The first
of distortion or we can improve the distortion by using a step in implementing a search is to define the set of
two-dimensional quantizer and accept the difficulties in the allowable quantizer output vectors. Then for each input
implementation. To date the easy implementation of one- vector a search is conducted to find the output vector
dimensional quantizers has outweighted the theoretical ad- assigned to that input vector by the partitioning.
vantages of using two-dimensional quantizers. Similarly the first step in designing a quantizer using

In Section III we consider the design of the optimum prequantization is to define the set of output vectors. This
uniform two-dimensional quantizer. Gersho [31 has stated is done using a two-dimensional quantizer that is called the
that the optimum uniform two-dimensional quantizer is the output quantizer. Thus we must determine the set of out-
hexagonal quantizer. Using prequantization we construct a put vectors specified by the quantizer being designed and
simple design for the hexagonal quantizer which can oper- then build a two-dimensional quantizer with that same set
ate in real time. For our purposes we say that a quantizer of output vectors. The problem of building the output
can operate in real time if the quantizer can operate at quantizer is somewhat simplified in the prequantization
approximately the same source rates as a one-dimensional approach since there are no constraints on how the output
quantizer. Thus the prequantization design of the hexago- quantizer partitions the input space.
nal quantizer allows us to take advantage of the perfor- The second step in the quantizer design is to require that
mance improvements available with two-dimensional for each input vector the proper output vector is assigned.
quantizers while maintaining the easy implementation For the quantizer being designed, let A, he an output
characteristic of one-dimensional quantizers. This hexago- vector and S, be the set of all input vectors contained in the
nal quantizer design is a significant result and demon- cell of the partition corresponding to A,. Similarly A, is also
strates the potential practical applications of prequantiza- an output vector of the output quantizer, and we let T he
tion. the set of all input vectors contained in the cell of the

The design of suboptimum two-dimensional quantizers partition corresponding to A,. A nonlinearity called a
has also been studied in the literature. This interest has prequantizer is used to map S, into T, for all s. Thus the
been motivated by the numerous examples in which the prequantization design maps S, into A, by first mapping .;,
data are physically generated in groups of two. These into T, with the prequantizer and then mapping T, into A,
studies note the difficulty in designing optimum quantizers using the output quantizer. This prequantization design
and explore the advantages of using suboptimum two-di- procedure is illustrated with a simple example.
mensional quantizers. One example of data that are gener- Consider the design of the two-dimensional quantizer
ated in pairs is samples from a complex-valued discrete shown in Fig. 2. This quantizer has no significance other
Fourier transform. The design of suboptimum two-dimen- than its usefulness in this example. Using the prequantiza-
sional quantizers for the discrete Fourier transform (DFT) tion procedure we must first build an output quantizer that
ha.; been studied by Pearlman and Gray [41 and Gallagher defines the same output set as in Fig. 2. The output
. quantizer can he designed very simply using two univariate
In Sections IV and V we examine two examples of equal-step-size quantizers. The partitioning of the output

suboptimum two-dimensional quantizers. The quantizers quantizer is shown in Fig. 3. Having defined the output
are then redesigned using the prequantization approach. In vector set with the output quantizer. we now turn to the
each case, the addition of prequantization substantially design of the prequantizer. We observe that each partition
reduces the mean-squared error performance of the quan- in Fig. 2 can be mapped into the corresponding cell in Fig.
tizer. These results further emphasize the usefulness of 3 by letting y' = y and x' = x - A/4. Thus the prequan-
prequantization. tizer that completes the design of the quantizer in Fig. 2 is

given by

I1. PitEQUANTIZATION ) -Y

The design of two-dimensional q.. . izers using pre- X'= x-- (I)
quantization is illustrated in Fig. I. The oesign consists of 4
a nonlinearity called a prequantizer preceding a two-di- One advantage of using the prequantitation design ap-
mensional quantizer called an output quantizer. This de- proach is that often the quantizer can operate in real time.
sign approach is analogous to the implementation of a Again we define a real-time quantizer as a quantizcr that
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The variables w and z are quantized separately by uni-
variate quantizers with a uniform step-size A. The output%
of the output quantizer are then obtained using the linear

- transformation

____~ 
(,- +4.,---

-y ___( IV (3)

The position of this quantizer in the hexagonal quantizer
• -design is shown in Fig. 4 and the partitioning of the scaled

diamond quantizer is given in Fig. 5. Having chosen the
output quantizer as defined in (2) and (3), we now turn to
the design of the prequantizer.

Fig, 2 Partitioning of a iwo-dimrnrional quanazer. The prequantizer must map the hexagonal region corre-
sponding to each output into a scaled diamond region

Y, corresponding to that same output. Consider the hexagonal
partition shown in Fig. 6. Assume x is fixed and the pair
(x, y) is contained within a given hexagonal partition. We
now pose a question: does there exist a value x' such that
the pair (x', y) is contained within the corresponding
diamond partition for all values of y? This approach is
illustrated with the following example. Let x = x, as shown
in Fig. 6 and let y be in the range - A/2VF to A/2vJ3. In

- Fig. 6 we observe that the hexagonal quantizer output will
be (0,6) for all input pairs in the set {(x1, y): y, -5 y !5

< Y 2 ).

Similarly in Fig. 5 we observe that the scaled diamond
quantizer output will be (0,0) for all input pairs in the set
{(x 2, y):Y y <Y 2). Therefore, iff(xt) = x2, the quan-
tizer in Fig. 4 will behave like the hexagonal quantizer for
all input pairs in the set ((xI, y): -A/243 -y < A/2V ).

Fig. 3. Partitioning of output quanttzer In fact, we can show that the quantizer in Fig. 4 behaves

like the hexagonal quantizer for all inputs in the set
can operate at approximately the same source rates as a li, y): he:aon quan for = inptin thsone-dimensional quantizer. In a number of examples the ((x1 , y): -cc _<y < cc) when 1(x,) = x2 . Repeating this

example for all possible values of x,, we obtain a prequan-
output quantizer can be implemented using a combination tizing function that maps the hexagonal region correspond-
of one-dimensional quantizers and as a result can operate ing to each output into a scaled diamond-shaped region
in real time. It is also useful to note that the prequantizer is corresponding to that same output. The resulting prequant-
defined only as a nonlinear mapping and may or may not izer function is given in (4).

be a quantizer. This differs from the term pre-quantizer

used in the literature which refers to one quantizer preced- 4 A A A A
ing another quantizer. n n2i - x .i +

II. HEXAGONAL QUANTIZATION /(x) = 3x - (2n + I)A (4)

Gersho has argued that for independent samples (at high A+ X (+ I)A
bit rates) the optimum uniform two-dimensional quantizer 2 + 2 6
is the hexagonal quantizer. The design of a hexagonal
quantizer using prequantization is given here. First we
attempt to build a two-dimensional output quantizer that IV. PREQUANTIZED SPECTRAL PHASE CODING
can be easily implemented and operate in real time. One Spectral phase coding (SPC) is a robust suboptimum
quantizer meeting these requirements is a scaled version of technique for coding a nonstationary or large dynamic
the diamond quantizer given below, range discrete-time series into digital form. SPC utilizes the

Let the inputs to the two-dimensional output quantizer discrete Fourier transform and a two-dimensional quan-
he x and y. The variables x and y are first encoded into two tizer to obtain its robust characteristics. The SPC algo-
new variables w and z by the linear transformation rithms are given here, while a detailed explanation of SPC

W = X + viy is available in 161. The input is a discrete-time complex-val-
ued random sequence (a,.} 1-. The spectral magnitude A,

z = x - ry. (2) and the spectral phase i, of the discrete sequence are given

o
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below: where
M-0 I~ 0)I CO I# ±P-(a,), ID-" (A,e'')5,:o. (-5) , =cos' A,-

SPC aciodes the magnitude and phase of the spectrum by and
forming the sequence I given by S= maxA.

+'p+AV = - y, (6) where the maximum is taken over p = 0. . M - I. The

-nj
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quantized sequence (4,) is transmitted and used at the We now define the quantization errors for 9, and y.. as
receiver to recover the original discrete signal. The recon- e

I structed discrete sequence is p p P,

d4 =7,,- f,. (13)

( Solving for 9, and y. in (6) and using this result with (9)

This equation can be rewritten in terms of the quantized and (I1) in (13) we obtain

magnitude and phase components at the receiver
e, 1(a, + a,,+),

• 
D F T -

S p)M-

(a. - 2- e"',(e', + e - (8)
w e ed , = (a e - a , ) ( 14 )

where2

I Then substituting (12) into (14) and using a trigonometric
# = 2 (= 4 + e+M) identity we can write

1(9) 2 I l) sinnNecosnN-y.,

Examining (6) and (9) we see that the variables 9, and - 2 (

are quantized by a two-dimensional quantizer called a de= -W I -c) os NO sinnN-e. (15)
diamond quantizer. SPC utilizes the discrete Fourier trans- =

form along with the diamond quantizer to code the possi- Thus the mse on y. is
bly nonstationary random sequence (a.) into a well-be-
haved uniformly bounded sequence (4). In many cases E(d4) - ( )
the sequence (4,) is uniformly distributed from zero to 2r. N2 a=l "I
As a consequence (4',) is quantized using a uniform step- .E(cos nN9ecos mN, sin nNy. sin mN-,,). (16)
size quantizer.

Since SPC is a suboptimum quantizer we ask the ques- For a large number of quantization levels N, the mse on
tion: does there exist a prequantizing function that can becomes
improve the SPC performance? The results from 141 and [7] ,i I
indicate that for polar quantizationl (at high bit rates) the E(d ' " - ( + EosUN.J}),  (17)
number of magnitude quantization levels N,, and the num- N ,= "

ber of phase levels N2, must be related by From (17) we find that E(d2) is minimized for

N2  2.6 NI (10) 9, = ; = k + -I- (18)

for optimum performance. In SPC. y. ranges from zero to where
17/2 and O, ranges from zero to 2a. Thus y, has only k=0,1,-..,2N- 1.
one-fourth the effective quantization levels of 9,. If v/ is
simply rescaled to range from zero to v, (,) cannot be Applying these results, we propose the following coding
uniquely recovered from the sequence (4',). However, using scheme called prequantized spectral phase coding (PQSPC).
prequantization the quantizer can be redesigned to mini- First obtain 9, and Y, as with SPC. The values (9,) are

mize the mean square error (mse) on yp and improve the then quantized with output levels kv/N + v/2N for k =
SPC performance. 0, 1,. .,2N - I. The quantizer output (0.) is then sed to

We begin by defining the quantization errors for 4, and form the sequence (#,) and the rest of the procedure is
mas identical to SPC. Figs. 7 and 8 depict the quantization

region shapes for SPC and PQSPC, respectively.
a 4' -,, In [71 SPC was compared with the optimum unit vari-

a+= - +m.(11) ance Gaussian quantizer (O.G.Q.). We now present a simi-
lar comparison to evaluate the performance of PQSPC.

Assume the quantization takes place using an N-level equal The normalized mse performances of the optimum unit
step-size quantizer. Then using a Fourier series expansion, variance Gaussian quantizer, SPC and PQSPC are com-
we can write pared in Figs. 9 and 10. All the quantizers have 32 levels (5

bits/sample) and the block size for SPC and PQSPC is 64.
2 L-IYsinnNa . In Fig. 9 the normalized mse of the three quantizers with a

a - ,= n zero-mean Gaussian input is given as a function of the
input variance. The normalized me of the quantizers with

ap1 = 2 'sin nN+'. (12) a zero-mean Laplacian input is given as a function of the
N n input variance in Fig. 10.
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Fig. 9. Comparison of normalized m~e howcen optimum unit variance
(,aussian quantizer. SPC. and prequantized SPC with a zero-mean
G~aussian input.

In terms of normalized mse. PQSPC offers an improve. malized mse of PQSPC remains constant for any ch.'nge in
ment over SK' of 16.3 percent for the Gaussian input the signal variance and changes only 1.4 percent whten the
densities and 16.0 percent for the Laplacian densities. The input statistics are changed from Gaussian to Laplaklan.
improvement for nonsymmetric input densities can be even
more dramatic. In the case of the one side exponential V. HSUEH-SAWCHUK HOLOGRAMS
density PQSPC offers a 47.5 percent reduction in nor-
mitalied mean-squared error over that of SPC. A desirable The wide applicability of prequantization is further il-

*characteristic Of SPC is its relative insensitivity to a change lustrated hy considering an example from computer-gener-
in signal power or statistics. Figs. 9 and 10 demonstrate ated holography. In this section wc present the results of

*that PQSPC shares this characteristic. In fact. the nor- using prequantization in lisuch-Sawchuk computer-gener-
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Fig, 10. Comwparison of normalized mse between optimum unit vauiance
Gaussian quamter, SPC, and prequantized SpC with a zero-mean
Laplacian input.

ated holograms. A detailed analysis of prequantization in
Hsueh-Sawchuk holograms is given in [91 and a good
summary of computer-generated holography is available in
(10).

The Hsueh-Sawchuk hologram encodes the discrete
Fourier transform of the desired holographic image into a
binary pattern. This binary pattern is then written onto the
hologram using a pattern generator with finite resolution.
The finite resolution of the pattern generator can be mod-
eled as a quantizer. Thus the complex-valued discrete Four-
ier transform of the holographic image is effectively quan-
tized by a two-dimensional quantizer. This quantization
can be improved by using prequantization.

The normalized mean square quantization error for the
Hsueh-Sawchuk hologram in Fig. Ii is 6.82 X 10-2. This
compares with a mean square error of 5.25 X 10-2 for the
prequantized Hsueh-Sawchuk hologram. Thus the quanti- Fij. . .... m
zation error is improved 23 percent by the addition of Fig. it. hueb-Sawcuk hosam

4 prequantization. The improved quantization error can also
be seen by comparing Figs. II and 12. The quantization
error can be approximated as a white additive noise which IV. DISCUSSION
appears as the high frequency background noise in the We have presented a new approach to the design of
holograms. We see the prequantized hologram in Fig. 12 two-dimensional quantizers. The usefulness of the pre-
has less background noise than the hologram in Fig. II. quantization approach has been demonstrated in three
Thus the prequantization has reduced the quantization examples. The hexagonal quantizer design is of particular
error without any harmful effects on the holographic image importance. The prequantization design makes the use of
itself. the hexagonal quantizer with its theoretical advantages
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here indicate that this approach may deserve some con-
sideration whenever a two-dimensional quantizer is to be

~implemented.
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